Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communi...Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communication technology due to its very broad bandwidth, astrophysical observation advantages and device maturing in recent years. In this paper, a massive-antenna-array-enabled THz satellite communication system is proposed to be established in Tanggula, Tibet, where the average altitude is 5.068 km and the mean-clear-sky precipitable water vapor(PWV) is as low as 1.31 mm. In particular, a link budget analysis(LBA) framework is developed for THz space communications, considering unique THz channel properties and massive antenna array techniques. Moreover, practical siting conditions are taken into account, including the altitude, PWV, THz spectral windows, rain and cloud factors. On the basis of the developed link budget model, the massive antenna array model, and the practical parameters in Tanggula, the performances of signal-to-noise ratio(SNR) and capacity are evaluated. The results illustrate that 1 Tbit/s is attainable in the 0.275~0.37 THz spectral window in Tanggula, by using an antenna array of the size 64.展开更多
The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multipl...The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.展开更多
基金the National Natural Science Foundation of China(No.61701300)the Shanghai Sailing(YANG FAN)Program(No.17YF1409900)HAN Chong’s"Chenguang Program"Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission
文摘Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz(THz) band is envisioned as a key satellite communication technology due to its very broad bandwidth, astrophysical observation advantages and device maturing in recent years. In this paper, a massive-antenna-array-enabled THz satellite communication system is proposed to be established in Tanggula, Tibet, where the average altitude is 5.068 km and the mean-clear-sky precipitable water vapor(PWV) is as low as 1.31 mm. In particular, a link budget analysis(LBA) framework is developed for THz space communications, considering unique THz channel properties and massive antenna array techniques. Moreover, practical siting conditions are taken into account, including the altitude, PWV, THz spectral windows, rain and cloud factors. On the basis of the developed link budget model, the massive antenna array model, and the practical parameters in Tanggula, the performances of signal-to-noise ratio(SNR) and capacity are evaluated. The results illustrate that 1 Tbit/s is attainable in the 0.275~0.37 THz spectral window in Tanggula, by using an antenna array of the size 64.
基金the National Natural Science Foundation of China under Grant 60496312the 863 Program of China under Grants 2003AA12331004 and 2006AA01Z260.
文摘The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services.