Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown co...Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the...In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.展开更多
基金Technical Basis Projects of China's MIIT(Nos.ZQ092012B003,2012090003)
文摘Goal oriented( GO) methodology is a kind of success oriented system reliability analysis method and has been used widely.The repairable system with dual input closed-loop feedback link( DICLFL) considering shutdown correlation didn't make reliability analysis accurately based on existing GO methodology. So, a reliability analysis method used to deal with DICLFL considering shutdown correlation is provided based on GO methodology.Firstly, a new operator, which is used to describe DICLFL considering shutdown correlation,whose number is 1,is created and named as Type 9C operator. And then,the formulas of type 9C operator are derived based on Markov process theory. Finally,the new method presented in this paper is adopted to conduct the reliability analysis of an electro-hydraulic servo speed control system. The analysis result is compared with those of Monte Carlo simulation and fault tree analysis( FTA). The comparison results show that this new reliability analysis method based on GO methodology is feasible and meaningful for reliability analysis of repairable systems with DICLFL considering shutdown correlation.Meantime,it will be useful for more other applications.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.
基金supported by the National Natural Science Foundation of China (Grant No. 11047146)the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 11JK0544)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. 2010JQ1014)the Science Foundation of Baoji University of Arts and Sciences (Grant Nos. ZK1048 andZK1049)
文摘In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.