In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a...In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti...A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.展开更多
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ...The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.展开更多
A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of ...A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.展开更多
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity...Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.展开更多
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas...We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.展开更多
Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital w...Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.展开更多
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p...Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.展开更多
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures...Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.展开更多
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper...The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.展开更多
Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, lat...Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, latency was the function of the rest of network resource parameter (NRP). The relation between the number of nodes and that of end-to-end links was presented. In ethernet architecture, the algorithm to determine the link with the smallest latency is a polynomial issue when the number of network nodes is limited, so it can be solved by way of polynomial equations. Latency measuring is the key issue to determine the link with the smallest network latency. 3-node brigade (regiment) level network centric warfare (NCW) demonstration platform was studied and the latency between the detectors and weapon control stations was taken as an example. The algorithm of end-to-end network latency and link information in NCW was presented. The algorithm program based on Server/Client architecture was developed. The data transmission optimal link is one whose end-to-end latency is the smallest. This paper solves the key issue to determine the link whose end-to-end latency is the smallest in ethernet architecture. The study can be widely applied to determine the optimal link which is in the complex network environment of multiple service provision points.展开更多
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in...Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.展开更多
As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the conn...As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular, unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.展开更多
Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existe...Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.展开更多
We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment....We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro=mechanisms of network growth and the macrostructures of online social networks.展开更多
Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data l...Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data loss and are helpless to such attacks like data tampering.To offer high security level,in this paper,we first propose a multipath and decision-making(MD) scheme which applies multipath simultaneously delivery and decision-making for protecting the virtual network.Considering different security requirement for virtual link,we devise a hybrid scheme to protect the virtual links.For the critical links,MD scheme is adopted.For the other links,we adopt the Shared Backup Scheme.Our simulation results indicate the proposed scheme can significantly increase the security level of the critical link high in the loss of less acceptance ratio.展开更多
Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults....Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults. Based on the analysis on the predictability of satellite links, a link disruption routing strategy is proposed for multilayered satellite networks, where, a topology period is divided into non-uniform slots, and a routing table in each slot is calculated by the topology predictability of satellite networks, and a congestion control mechanism is proposed to ensure the reliable transmission of packets, and a flooding mechanism is given to deal with the routes selection in the case of unpredictable link disruption. This routing strategy is implemented on the satellite network simulation platform, the simulation results show that the strategy has less delay and higher link utilization, and can meet the routing requirements of multilayered satellite networks.展开更多
In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a no...In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to identifying node communities in both unipartite and bipartite networks, some researchers have investigated the link community detection problem in unipartite networks. But current research pays little attention to the link community detection problem in bipartite networks. In this paper, we investigate the link community detection problem in bipartite networks, and formulate it into an integer programming model. We proposed a genetic algorithm for partition the bipartite network into overlapping link communities. Simulations are done on both artificial networks and real-world networks. The results show that the bipartite network can be efficiently partitioned into overlapping link communities by the genetic algorithm.展开更多
文摘In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Nature Science Foundation of China (90716028)~~
文摘A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking.
基金supported by the National Natural Science Foundation of China (9071602860974106)
文摘The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness.
文摘A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph.
基金supported by the National Natural Science Foundation of China(31970116,72274192)。
文摘Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients.
基金the National Natural Science Foundation of China(Grant Nos.61973118,51741902,11761033,12075088,and 11835003)Project in JiangXi Province Department of Science and Technology(Grant Nos.20212BBE51010 and 20182BCB22009)the Natural Science Foundation of Zhejiang Province(Grant No.Y22F035316)。
文摘We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs.
文摘Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.
基金Item Sponsored by National Natural Science Foundation of China(61290323,61333007,61473064)Fundamental Research Funds for Central Universities of China(N130108001)+1 种基金National High Technology Research and Development Program of China(2015AA043802)General Project on Scientific Research for Education Department of Liaoning Province of China(L20150186)
文摘Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.
基金financially supported by the Natural Science Foundation of Hunan Province(2021JJ30679)。
文摘Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.51876194,U1909216)the China Petrochemical Corporation Research Project(318023-2)the Zhejiang Public Welfare Technology Research Project(LGG20F030007)。
文摘The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models.
基金Sponsored by Grand Preresearch Project Foundation of General Armament Department of the CPLAin the Tenth Five-year Plan (Grant No41306020202)the National Natural Science Foundation of China(Grant No60672150)
文摘Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, latency was the function of the rest of network resource parameter (NRP). The relation between the number of nodes and that of end-to-end links was presented. In ethernet architecture, the algorithm to determine the link with the smallest latency is a polynomial issue when the number of network nodes is limited, so it can be solved by way of polynomial equations. Latency measuring is the key issue to determine the link with the smallest network latency. 3-node brigade (regiment) level network centric warfare (NCW) demonstration platform was studied and the latency between the detectors and weapon control stations was taken as an example. The algorithm of end-to-end network latency and link information in NCW was presented. The algorithm program based on Server/Client architecture was developed. The data transmission optimal link is one whose end-to-end latency is the smallest. This paper solves the key issue to determine the link whose end-to-end latency is the smallest in ethernet architecture. The study can be widely applied to determine the optimal link which is in the complex network environment of multiple service provision points.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201173 and 61304154)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133219120032)+1 种基金the Postdoctoral Science Foundation of China(Grant No.2013M541673)China Postdoctoral Science Special Foundation(Grant No.2015T80556)
文摘Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275186 and 91024026)
文摘As a classical model of statistical physics, the percolation theory provides a powerful approach to analyze the network structure and dynamics. Recently, to model the relations among interacting agents beyond the connection of the networked system, the concept of dependence link is proposed to represent the dependence relationship of agents. These studies suggest that the percolation properties of these networks differ greatly from those of the ordinary networks. In particular, unlike the well known continuous transition on the ordinary networks, the percolation transitions on these networks are discontinuous. Moreover, these networks are more fragile for a broader degree distribution, which is opposite to the famous results for the ordinary networks. In this article, we give a summary of the theoretical approaches to study the percolation process on networks with inter- and inner-dependence links, and review the recent advances in this field, focusing on the topology and robustness of such networks.
基金Project supported by the National Natural Science Foundation of China(Grants No.61202262)the Natural Science Foundation of Jiangsu Province,China(Grants No.BK2012328)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grants No.20120092120034)
文摘Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recov- ers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61104139,70871082,and 71101053)the ECUST for Excellent Young Scientists,China
文摘We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro=mechanisms of network growth and the macrostructures of online social networks.
基金supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China(61521003)National Key Research and Development Plan(2016YFB0800101)National Natural Science Foundation of China(61602509)
文摘Nowadays network virtualization is utterly popular.As a result,how to protect the virtual networks from attacking on the link is increasingly important.Existing schemes are mainly backup-based,which suffer from data loss and are helpless to such attacks like data tampering.To offer high security level,in this paper,we first propose a multipath and decision-making(MD) scheme which applies multipath simultaneously delivery and decision-making for protecting the virtual network.Considering different security requirement for virtual link,we devise a hybrid scheme to protect the virtual links.For the critical links,MD scheme is adopted.For the other links,we adopt the Shared Backup Scheme.Our simulation results indicate the proposed scheme can significantly increase the security level of the critical link high in the loss of less acceptance ratio.
文摘Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults. Based on the analysis on the predictability of satellite links, a link disruption routing strategy is proposed for multilayered satellite networks, where, a topology period is divided into non-uniform slots, and a routing table in each slot is calculated by the topology predictability of satellite networks, and a congestion control mechanism is proposed to ensure the reliable transmission of packets, and a flooding mechanism is given to deal with the routes selection in the case of unpredictable link disruption. This routing strategy is implemented on the satellite network simulation platform, the simulation results show that the strategy has less delay and higher link utilization, and can meet the routing requirements of multilayered satellite networks.
文摘In the past ten years, community detection in complex networks has attracted more and more attention of researchers. Communities often correspond to functional subunits in the complex systems. In complex network, a node community can be defined as a subgraph induced by a set of nodes, while a link community is a subgraph induced by a set of links. Although most researches pay more attention to identifying node communities in both unipartite and bipartite networks, some researchers have investigated the link community detection problem in unipartite networks. But current research pays little attention to the link community detection problem in bipartite networks. In this paper, we investigate the link community detection problem in bipartite networks, and formulate it into an integer programming model. We proposed a genetic algorithm for partition the bipartite network into overlapping link communities. Simulations are done on both artificial networks and real-world networks. The results show that the bipartite network can be efficiently partitioned into overlapping link communities by the genetic algorithm.