Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power c...Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.展开更多
Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter...Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.展开更多
In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, ar...In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, are difficult to identify due to inadequate and sparse geochemical measurements available. Therefore, it is essential to design and implement a planned monitoring net-work to obtain essential information required for establishing the potential contamination source locations, i.e., waste dumps, tailing dams, pits and possible pathways through the subsurface, and to design a remediation strategy for rehabilitation. This study presents an illustrative application of modeling the flow and transport processes and monitoring network design in a study area hydrogeologically resembling an abandoned mine site in Queensland, Australia. In this preliminary study, the contaminant transport process modeled does not incorporate the reactive geochemistry of the contaminants. The transport process is modeled considering a generic conservative contaminant for the illustrative purpose of showing the potential application of an optimal monitoring design methodology. This study aims to design optimal monitoring network to: 1) minimize the contaminant solute mass estimation error;2) locate the plume boundary;3) select the monitoring locations with (potentially) high concentrations. A linked simulation optimization based methodology is utilized for optimal monitoring network design. The methodology is applied utilizing a recently developed software package CARE-GWMND, developed at James Cook University for optimal monitoring network design. Given the complexity of the groundwater systems and the sparsity of pollutant concentration observation data from the field, this software is capable of simulating the groundwater flow and solute transport with spatial interpolation of data from a sparse set of available data, and it utilizes the optimization algorithm to determine optimum locations for implementing monitoring wells.展开更多
Ad hoc mobile cloud computing networks are affected by various issues,like delay,energy consumption,flexibility,infrastructure,network lifetime,security,stability,data transition,and link accomplishment.Given the issu...Ad hoc mobile cloud computing networks are affected by various issues,like delay,energy consumption,flexibility,infrastructure,network lifetime,security,stability,data transition,and link accomplishment.Given the issues above,route failure is prevalent in ad hoc mobile cloud computing networks,which increases energy consumption and delay and reduces stability.These issues may affect several interconnected nodes in an ad hoc mobile cloud computing network.To address these weaknesses,which raise many concerns about privacy and security,this study formulated clustering-based storage and search optimization approaches using cross-layer analysis.The proposed approaches were formed by cross-layer analysis based on intrusion detection methods.First,the clustering process based on storage and search optimization was formulated for clustering and route maintenance in ad hoc mobile cloud computing networks.Moreover,delay,energy consumption,network lifetime,and link accomplishment are highly addressed by the proposed algorithm.The hidden Markov model is used to maintain the data transition and distributions in the network.Every data communication network,like ad hoc mobile cloud computing,faces security and confidentiality issues.However,the main security issues in this article are addressed using the storage and search optimization approach.Hence,the new algorithm developed helps detect intruders through intelligent cross layer analysis with theMarkov model.The proposed model was simulated in Network Simulator 3,and the outcomes were compared with those of prevailing methods for evaluating parameters,like accuracy,end-to-end delay,energy consumption,network lifetime,packet delivery ratio,and throughput.展开更多
A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, emplo...A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.展开更多
The design process in power electronics is driven by increased utilisation level of the used components to gain performance whilst keeping cost low. This article provides an overview on challenges in low-voltage high-...The design process in power electronics is driven by increased utilisation level of the used components to gain performance whilst keeping cost low. This article provides an overview on challenges in low-voltage high-current systems, e.g. used in automotive applications. The main content points are: topology selection--single systems vs. cascaded systems, PCB manufacturing technology overview, current measurement methods, bulk capacitor design (ceramic DC link) and PCB design instructions for high-current systems. The PCB design instructions target on optimised thermal design for maximised PCB utilisation and on optimised track design for a low inductance DC link interconnection. The paper bases on calculations, measurements and simulations.展开更多
Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and r...Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and reduce the weight of landing gear, Global/local Linked Driven Optimization Strategy(GLDOS) was developed to conduct the overall process design of lower drag stay in respect of optimization thought. The whole-process optimization involves two stages of structural conceptual design and detailed design. In the structural conceptual design, the landing gear lower drag stay was globally topologically optimized by adopting multiple starting points algorithm. In the detailed design, the local size and shape of landing gear lower drag stay were globally optimized by the gradient optimization strategy. The GLDOS method adopts different optimization strategies for different optimization stages to acquire the optimum design effect. Through the experimental validation, the weight of the optimized lower dray stay with the developed GLDOS is reduced by 16.79% while keeping enough strength and stiffness, which satisfies the requirements of engineering design under the typical loading conditions. The proposed GLDOS is validated to be accurate and efficient in optimization scheme and design cycles. The efforts of this paper provide a whole-process optimization approach regarding different optimization technologies in different design phases, which is significant in reducing structural weight and enhance design tp wid 1 precision for complex structures in aircrafts.展开更多
We propose and demonstrate free-space optical data links based on coaxial sidelobe-modified optical vortices(CSMOVs). In contrast to the optical communication systems based on amplitude, frequency, or phase detectio...We propose and demonstrate free-space optical data links based on coaxial sidelobe-modified optical vortices(CSMOVs). In contrast to the optical communication systems based on amplitude, frequency, or phase detection, the proposed scheme uses the radii ratio between the principle ring and the first sidelobe of the CSMOV.Therefore, the demand of stringent alignment and/or accurate phase matching is released. We design and optimize a composite computer-generated hologram to generate a CSMOV with four topological charges(TCs).Extracted from the images captured by a CCD camera, the radii ratio between the principle ring and the first sidelobe of different TCs are consistent with the theoretical values.展开更多
基金supported by the National 863 projects of China(2014AA01A706)
文摘Device-to-Device(D2D) communication has been proposed to facilitate cellular network with system capacity(SC) and quality of service(QoS).We consider the design of link assignment(LA),channel allocation(CA)and power control(PC) in D2D-aided content delivery scenario for both user fairness(UF)and system throughput(ST) under QoS requirement.Due to the complexity of the problem,we decompose it into two components:CA is formulated from graph perspective to mitigate severe co-channel interference,which turns out to be the Max K-cut problem;LA and PC are jointly optimized to utilize the gain achieved from CA for supreme performance,and specifically,genetic algorithm(GA) is adopted to optimize LA,but when deriving the fitness of each chromosome,PC optimization will be involved.Thanks to numerical results,we elucidate the efficacy of our scheme.
文摘Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.
文摘In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, are difficult to identify due to inadequate and sparse geochemical measurements available. Therefore, it is essential to design and implement a planned monitoring net-work to obtain essential information required for establishing the potential contamination source locations, i.e., waste dumps, tailing dams, pits and possible pathways through the subsurface, and to design a remediation strategy for rehabilitation. This study presents an illustrative application of modeling the flow and transport processes and monitoring network design in a study area hydrogeologically resembling an abandoned mine site in Queensland, Australia. In this preliminary study, the contaminant transport process modeled does not incorporate the reactive geochemistry of the contaminants. The transport process is modeled considering a generic conservative contaminant for the illustrative purpose of showing the potential application of an optimal monitoring design methodology. This study aims to design optimal monitoring network to: 1) minimize the contaminant solute mass estimation error;2) locate the plume boundary;3) select the monitoring locations with (potentially) high concentrations. A linked simulation optimization based methodology is utilized for optimal monitoring network design. The methodology is applied utilizing a recently developed software package CARE-GWMND, developed at James Cook University for optimal monitoring network design. Given the complexity of the groundwater systems and the sparsity of pollutant concentration observation data from the field, this software is capable of simulating the groundwater flow and solute transport with spatial interpolation of data from a sparse set of available data, and it utilizes the optimization algorithm to determine optimum locations for implementing monitoring wells.
基金This research was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Ad hoc mobile cloud computing networks are affected by various issues,like delay,energy consumption,flexibility,infrastructure,network lifetime,security,stability,data transition,and link accomplishment.Given the issues above,route failure is prevalent in ad hoc mobile cloud computing networks,which increases energy consumption and delay and reduces stability.These issues may affect several interconnected nodes in an ad hoc mobile cloud computing network.To address these weaknesses,which raise many concerns about privacy and security,this study formulated clustering-based storage and search optimization approaches using cross-layer analysis.The proposed approaches were formed by cross-layer analysis based on intrusion detection methods.First,the clustering process based on storage and search optimization was formulated for clustering and route maintenance in ad hoc mobile cloud computing networks.Moreover,delay,energy consumption,network lifetime,and link accomplishment are highly addressed by the proposed algorithm.The hidden Markov model is used to maintain the data transition and distributions in the network.Every data communication network,like ad hoc mobile cloud computing,faces security and confidentiality issues.However,the main security issues in this article are addressed using the storage and search optimization approach.Hence,the new algorithm developed helps detect intruders through intelligent cross layer analysis with theMarkov model.The proposed model was simulated in Network Simulator 3,and the outcomes were compared with those of prevailing methods for evaluating parameters,like accuracy,end-to-end delay,energy consumption,network lifetime,packet delivery ratio,and throughput.
文摘A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.
文摘The design process in power electronics is driven by increased utilisation level of the used components to gain performance whilst keeping cost low. This article provides an overview on challenges in low-voltage high-current systems, e.g. used in automotive applications. The main content points are: topology selection--single systems vs. cascaded systems, PCB manufacturing technology overview, current measurement methods, bulk capacitor design (ceramic DC link) and PCB design instructions for high-current systems. The PCB design instructions target on optimised thermal design for maximised PCB utilisation and on optimised track design for a low inductance DC link interconnection. The paper bases on calculations, measurements and simulations.
基金co-supported by National Natural Science Foundation of China (Nos. 51975124 and 51675179)Aerospace Science and Technology Fund of China (No.AERO201937)Research Start-up Funding of Fudan University (No. FDU38341)。
文摘Landing gear lower drag stay is a key component which connects fuselage and landing gear and directly effects the safety and performance of aircraft takeoff and landing. To effectively design the lower drag stay and reduce the weight of landing gear, Global/local Linked Driven Optimization Strategy(GLDOS) was developed to conduct the overall process design of lower drag stay in respect of optimization thought. The whole-process optimization involves two stages of structural conceptual design and detailed design. In the structural conceptual design, the landing gear lower drag stay was globally topologically optimized by adopting multiple starting points algorithm. In the detailed design, the local size and shape of landing gear lower drag stay were globally optimized by the gradient optimization strategy. The GLDOS method adopts different optimization strategies for different optimization stages to acquire the optimum design effect. Through the experimental validation, the weight of the optimized lower dray stay with the developed GLDOS is reduced by 16.79% while keeping enough strength and stiffness, which satisfies the requirements of engineering design under the typical loading conditions. The proposed GLDOS is validated to be accurate and efficient in optimization scheme and design cycles. The efforts of this paper provide a whole-process optimization approach regarding different optimization technologies in different design phases, which is significant in reducing structural weight and enhance design tp wid 1 precision for complex structures in aircrafts.
基金partially supported by the National Nature Science Foundation of China (Nos. 61138003, 61427819, and 61405121)the Natural Science Foundation of SZU (No. 201454)the startup funding of SZU (Nos. 000011, 000075)
文摘We propose and demonstrate free-space optical data links based on coaxial sidelobe-modified optical vortices(CSMOVs). In contrast to the optical communication systems based on amplitude, frequency, or phase detection, the proposed scheme uses the radii ratio between the principle ring and the first sidelobe of the CSMOV.Therefore, the demand of stringent alignment and/or accurate phase matching is released. We design and optimize a composite computer-generated hologram to generate a CSMOV with four topological charges(TCs).Extracted from the images captured by a CCD camera, the radii ratio between the principle ring and the first sidelobe of different TCs are consistent with the theoretical values.