期刊文献+
共找到53,244篇文章
< 1 2 250 >
每页显示 20 50 100
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
1
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
2
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Seasonal Characteristics of Forecasting Uncertainties in Surface PM_(2.5)Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region
3
作者 Qiuyan DU Chun ZHAO +6 位作者 Jiawang FENG Zining YANG Jiamin XU Jun GU Mingshuai ZHANG Mingyue XU Shengfu LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期801-816,共16页
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca... Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation. 展开更多
关键词 PM_(2.5) forecasting uncertainties forecast lead time meteorological fields Beijing-Tianjin-Hebei region
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
4
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity WEATHER
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
5
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
6
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
7
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite Model UECM ARIMA forecasting MALAYSIA
下载PDF
Generalized load graphical forecasting method based on modal decomposition
8
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
CALTM:A Context-Aware Long-Term Time-Series Forecasting Model
9
作者 Canghong Jin Jiapeng Chen +3 位作者 Shuyu Wu Hao Wu Shuoping Wang Jing Ying 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期873-891,共19页
Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approache... Time series data plays a crucial role in intelligent transportation systems.Traffic flow forecasting represents a precise estimation of future traffic flow within a specific region and time interval.Existing approaches,including sequence periodic,regression,and deep learning models,have shown promising results in short-term series forecasting.However,forecasting scenarios specifically focused on holiday traffic flow present unique challenges,such as distinct traffic patterns during vacations and the increased demand for long-term forecastings.Consequently,the effectiveness of existing methods diminishes in such scenarios.Therefore,we propose a novel longterm forecasting model based on scene matching and embedding fusion representation to forecast long-term holiday traffic flow.Our model comprises three components:the similar scene matching module,responsible for extracting Similar Scene Features;the long-short term representation fusion module,which integrates scenario embeddings;and a simple fully connected layer at the head for making the final forecasting.Experimental results on real datasets demonstrate that our model outperforms other methods,particularly in medium and long-term forecasting scenarios. 展开更多
关键词 Traffic volume forecasting scene matching multi module fusion
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
10
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
Assessment of ECMWF’s Precipitation Forecasting Performance for China from 2017 to 2022
11
作者 PAN Liu-jie ZHANG Hong-fang +2 位作者 LIANG Mian LIU Jia-huimin DAI Chang-ming 《Journal of Tropical Meteorology》 SCIE 2024年第3期257-274,共18页
This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-R... This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events. 展开更多
关键词 ECMWF forecasting verification neighborhood verification FSS
下载PDF
Weather-Driven Solar Power Forecasting Using D-Informer:Enhancing Predictions with Climate Variables
12
作者 Chenglian Ma Rui Han +2 位作者 Zhao An Tianyu Hu Meizhu Jin 《Energy Engineering》 EI 2024年第5期1245-1261,共17页
Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic... Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach. 展开更多
关键词 Power forecasting deep learning weather-driven solar power
下载PDF
Forecasting of surface current velocities using ensemble machine learning algorithms for the Guangdong−Hong Kong−Macao Greater Bay area based on the high frequency radar data
13
作者 Lei Ren Lingna Yang +4 位作者 Yaqi Wang Peng Yao Jun Wei Fan Yang Fearghal O’Donncha 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第10期1-15,共15页
Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and... Forecasting of ocean currents is critical for both marine meteorological research and ocean engineering and construction.Timely and accurate forecasting of coastal current velocities offers a scientific foundation and decision support for multiple practices such as search and rescue,disaster avoidance and remediation,and offshore construction.This research established a framework to generate short-term surface current forecasts based on ensemble machine learning trained on high frequency radar observation.Results indicate that an ensemble algorithm that used random forests to filter forecasting features by weighting them,and then used the AdaBoost method to forecast can significantly reduce the model training time,while ensuring the model forecasting effectiveness,with great economic benefits.Model accuracy is a function of surface current variability and the forecasting horizon.In order to improve the forecasting capability and accuracy of the model,the model structure of the ensemble algorithm was optimized,and the random forest algorithm was used to dynamically select model features.The results show that the error variation of the optimized surface current forecasting model has a more regular error variation,and the importance of the features varies with the forecasting time-step.At ten-step ahead forecasting horizon the model reported root mean square error,mean absolute error,and correlation coefficient by 2.84 cm/s,2.02 cm/s,and 0.96,respectively.The model error is affected by factors such as topography,boundaries,and geometric accuracy of the observation system.This paper demonstrates the potential of ensemble-based machine learning algorithm to improve forecasting of ocean currents. 展开更多
关键词 forecasting surface currents ensemble machine learning high frequency radar random forest AdaBoost
下载PDF
Investigating Periodic Dependencies to Improve Short-Term Load Forecasting
14
作者 Jialin Yu Xiaodi Zhang +1 位作者 Qi Zhong Jian Feng 《Energy Engineering》 EI 2024年第3期789-806,共18页
With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit p... With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers. 展开更多
关键词 Load forecasting TRANSFORMER attention mechanism power grid
下载PDF
Dynamic Forecasting of Traffic Event Duration in Istanbul:A Classification Approach with Real-Time Data Integration
15
作者 Mesut Ulu Yusuf Sait Türkan +2 位作者 Kenan Menguc Ersin Namlı Tarık Kucukdeniz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2259-2281,共23页
Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,re... Today,urban traffic,growing populations,and dense transportation networks are contributing to an increase in traffic incidents.These incidents include traffic accidents,vehicle breakdowns,fires,and traffic disputes,resulting in long waiting times,high carbon emissions,and other undesirable situations.It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities.This study presents a model for forecasting the traffic incident duration of traffic events with high precision.The proposed model goes through a 4-stage process using various features to predict the duration of four different traffic events and presents a feature reduction approach to enable real-time data collection and prediction.In the first stage,the dataset consisting of 24,431 data points and 75 variables is prepared by data collection,merging,missing data processing and data cleaning.In the second stage,models such as Decision Trees(DT),K-Nearest Neighbour(KNN),Random Forest(RF)and Support Vector Machines(SVM)are used and hyperparameter optimisation is performed with GridSearchCV.In the third stage,feature selection and reduction are performed and real-time data are used.In the last stage,model performance with 14 variables is evaluated with metrics such as accuracy,precision,recall,F1-score,MCC,confusion matrix and SHAP.The RF model outperforms other models with an accuracy of 98.5%.The study’s prediction results demonstrate that the proposed dynamic prediction model can achieve a high level of success. 展开更多
关键词 Traffic event duration forecasting machine learning feature reduction shapley additive explanations(SHAP)
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
16
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction
17
作者 Ramiz Gorkem Birdal 《Computers, Materials & Continua》 SCIE EI 2024年第3期4015-4028,共14页
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe... Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction. 展开更多
关键词 forecasting solar irradiance air pollution convolutional neural network long short-term memory network mRMR feature extraction
下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
18
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
下载PDF
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
19
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(RNN)
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
20
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 Short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部