Sialylated N-glycan isomers withα2-3 orα2-6 linkage(s)have distinctive roles in glycoproteins,but are difficult to distinguish.Wild-type(WT)and glycoengineered(mutant)therapeutic glycoproteins,cytotoxic T lymphocyte...Sialylated N-glycan isomers withα2-3 orα2-6 linkage(s)have distinctive roles in glycoproteins,but are difficult to distinguish.Wild-type(WT)and glycoengineered(mutant)therapeutic glycoproteins,cytotoxic T lymphocyte-associated antigen-4-immunoglobulin(CTLA4-Ig),were produced in Chinese hamster ovary cell lines;however,their linkage isomers have not been reported.In this study,N-glycans of CTLA4-Igs were released,labeled with procainamide,and analyzed by liquid chromatography-tandem mass spectrometry(MS/MS)to identify and quantify sialylated N-glycan linkage isomers.The linkage isomers were distinguished by comparison of 1)intensity of the N-acetylglucosamine ion to the sialic acid ion(Ln/Nn)using different fragmentation stability in MS/MS spectra and 2)retention time-shift for a selective m/z value in the extracted ion chromatogram.Each isomer was distinctively identified,and each quantity(>0.1%)was obtained relative to the total N-glycans(100%)for all observed ionization states.Twenty sialylated N-glycan isomers with onlyα2-3 linkage(s)in WT were identified,and each isomer's sum of quantities was 50.4%.Furthermore,39 sialylated N-glycan isomers(58.8%)in mono-(3 N-glycans;0.9%),bi-(18;48.3%),tri-(14;8.9%),and tetra-(4;0.7%)antennary structures of mutant were obtained,which comprised mono-(15 N-glycans;25.4%),di-(15;28.4%),tri-(8;4.8%),and tetra-(1;0.2%)sialylation,respectively,with onlyα2-3(10 N-glycans;4.8%),bothα2-3 andα2-6(14;18.4%),and onlyα2-6(15;35.6%)linkage(s).These results are consistent with those forα2-3 neuraminidase-treated N-glycans.This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.展开更多
The negative secondary ion mass spectrometry,in combination with the stereoselective derivatizations with substituted boronic acid RB(OH)_2,was used in the analysis of fourteen oligosac- charides.The mass spectra of t...The negative secondary ion mass spectrometry,in combination with the stereoselective derivatizations with substituted boronic acid RB(OH)_2,was used in the analysis of fourteen oligosac- charides.The mass spectra of the derivatives provide information on their linkage Positions and iso- merism of the individual monoscaccharide units.The results indicated that among the derivatives of the oligosaccharides analyzed,those with 1—4 and 1—6 linkages all presented the ion peaks at m/z 287,sometimes one more peak at m/z 449.Furthermore,a relationship was found between the linkage positions and the intensity orders of the derivative ions.Finally,the derivatives of the disaccharides with a galactose presented an intense ion peak at m/z 347,and those of oligosaccharides with 1—6 linkage to a galactose at terminal presented the ion at m/z 317.In the case of oligosaccharides with a fructose residue,characteristic ion of m/z 155 was produced.The conditions of stereoselective derivatizations and mass spectrometry were studied,in order to obtain a better reproducibility of the mass spectra.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)and funded by the Ministry of Education,Korea(Grant No.:2021R1A6A1A03044296)This study was supported by the Chung-Ang University Graduate Research Scholarship in 2022.
文摘Sialylated N-glycan isomers withα2-3 orα2-6 linkage(s)have distinctive roles in glycoproteins,but are difficult to distinguish.Wild-type(WT)and glycoengineered(mutant)therapeutic glycoproteins,cytotoxic T lymphocyte-associated antigen-4-immunoglobulin(CTLA4-Ig),were produced in Chinese hamster ovary cell lines;however,their linkage isomers have not been reported.In this study,N-glycans of CTLA4-Igs were released,labeled with procainamide,and analyzed by liquid chromatography-tandem mass spectrometry(MS/MS)to identify and quantify sialylated N-glycan linkage isomers.The linkage isomers were distinguished by comparison of 1)intensity of the N-acetylglucosamine ion to the sialic acid ion(Ln/Nn)using different fragmentation stability in MS/MS spectra and 2)retention time-shift for a selective m/z value in the extracted ion chromatogram.Each isomer was distinctively identified,and each quantity(>0.1%)was obtained relative to the total N-glycans(100%)for all observed ionization states.Twenty sialylated N-glycan isomers with onlyα2-3 linkage(s)in WT were identified,and each isomer's sum of quantities was 50.4%.Furthermore,39 sialylated N-glycan isomers(58.8%)in mono-(3 N-glycans;0.9%),bi-(18;48.3%),tri-(14;8.9%),and tetra-(4;0.7%)antennary structures of mutant were obtained,which comprised mono-(15 N-glycans;25.4%),di-(15;28.4%),tri-(8;4.8%),and tetra-(1;0.2%)sialylation,respectively,with onlyα2-3(10 N-glycans;4.8%),bothα2-3 andα2-6(14;18.4%),and onlyα2-6(15;35.6%)linkage(s).These results are consistent with those forα2-3 neuraminidase-treated N-glycans.This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.
基金Project supported by the National Natural Science Foundation of China
文摘The negative secondary ion mass spectrometry,in combination with the stereoselective derivatizations with substituted boronic acid RB(OH)_2,was used in the analysis of fourteen oligosac- charides.The mass spectra of the derivatives provide information on their linkage Positions and iso- merism of the individual monoscaccharide units.The results indicated that among the derivatives of the oligosaccharides analyzed,those with 1—4 and 1—6 linkages all presented the ion peaks at m/z 287,sometimes one more peak at m/z 449.Furthermore,a relationship was found between the linkage positions and the intensity orders of the derivative ions.Finally,the derivatives of the disaccharides with a galactose presented an intense ion peak at m/z 347,and those of oligosaccharides with 1—6 linkage to a galactose at terminal presented the ion at m/z 317.In the case of oligosaccharides with a fructose residue,characteristic ion of m/z 155 was produced.The conditions of stereoselective derivatizations and mass spectrometry were studied,in order to obtain a better reproducibility of the mass spectra.