期刊文献+
共找到1,701篇文章
< 1 2 86 >
每页显示 20 50 100
Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System
1
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第7期1457-1490,共34页
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr... This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge. 展开更多
关键词 MACHINE-LEARNING Deep-Learning intrusion detection system security PRIVACY deep neural network NSL-KDD Dataset
下载PDF
Robust Network Security:A Deep Learning Approach to Intrusion Detection in IoT
2
作者 Ammar Odeh Anas Abu Taleb 《Computers, Materials & Continua》 SCIE EI 2024年第12期4149-4169,共21页
The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this... The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies. 展开更多
关键词 intrusion detection system(IDS) Internet ofThings(IoT) convolutional neural network(CNN) long short-term memory(LSTM) autoencoder network security deep learning data preprocessing feature selection cyber threats
下载PDF
A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions
3
作者 Monirah Al-Ajlan Mourad Ykhlef 《Computers, Materials & Continua》 SCIE EI 2024年第11期2053-2076,共24页
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener... The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps. 展开更多
关键词 intrusion detection systems network security generative networks deep learning DATASET
下载PDF
CNN Channel Attention Intrusion Detection SystemUsing NSL-KDD Dataset
4
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Syed Umar Amin Zafar Iqbal Khan Jehad Saad Alqurni 《Computers, Materials & Continua》 SCIE EI 2024年第6期4319-4347,共29页
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi... Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances. 展开更多
关键词 intrusion detection system(IDS) NSL-KDD dataset deep-learning MACHINE-LEARNING CNN channel Attention network security
下载PDF
Intelligent Intrusion Detection System Model Using Rough Neural Network 被引量:4
5
作者 Yan, Huai-Zhi Hu, Chang-Zhen Tan, Hui-Min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第1期119-122,共4页
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma... A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management. 展开更多
关键词 network security neural network intelligent intrusion detection rough set
下载PDF
Intrusion Detection Model Using Chaotic MAP for Network Coding Enabled Mobile Small Cells
6
作者 Chanumolu Kiran Kumar Nandhakumar Ramachandran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3151-3176,共26页
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a... Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high. 展开更多
关键词 network coding small cells data transmission intrusion detection model hashed message authentication code chaotic sequence mapping secure transmission
下载PDF
Classification Model with High Deviation for Intrusion Detection on System Call Traces
7
作者 彭新光 刘玉树 +1 位作者 吴裕树 杨勇 《Journal of Beijing Institute of Technology》 EI CAS 2005年第3期260-263,共4页
A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defi... A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defined on the basis of in-depth analysis of completeness and correctness of pattern databases. Labels of short sequences are predicted by learned RIPPER rule set and the nature of the unidentified short sequences is confirmed by statistical method. Experiment results indicate that the classification model increases clearly the deviation between the attack and the normal traces and improves detection capability against known and unknown attacks. 展开更多
关键词 network security intrusion detection system calls unidentified sequences classification model
下载PDF
Improving the Detection Rate of Rarely Appearing Intrusions in Network-Based Intrusion Detection Systems
8
作者 Eunmok Yang Gyanendra Prasad Joshi Changho Seo 《Computers, Materials & Continua》 SCIE EI 2021年第2期1647-1663,共17页
In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detectio... In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detection system effectively.In this work,we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances.Our technique mitigates the statistical imbalance in these instances.We also carried out an experiment on the training model by increasing the instances,thereby increasing the attack instances step by step up to 13 levels.The experiments included not only known attacks,but also unknown new intrusions.The results are compared with the existing studies from the literature,and show an improvement in accuracy,sensitivity,and specificity over previous studies.The detection rates for the remote-to-user(R2L)and user-to-root(U2L)categories are improved significantly by adding fewer instances.The detection of many intrusions is increased from a very low to a very high detection rate.The detection of newer attacks that had not been used in training improved from 9%to 12%.This study has practical applications in network administration to protect from known and unknown attacks.If network administrators are running out of instances for some attacks,they can increase the number of instances with rarely appearing instances,thereby improving the detection of both known and unknown new attacks. 展开更多
关键词 intrusion detection statistical imbalance SMO machine learning network security
下载PDF
The Application of Weighted Association Rules in Host-Based Intrusion Detection System 被引量:1
9
作者 曹元大 薛静锋 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期418-421,共4页
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight... Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed. 展开更多
关键词 network security intrusion detection system association rules WEIGHT
下载PDF
Multi-Attack Intrusion Detection System for Software-Defined Internet of Things Network
10
作者 Tarcizio Ferrao Franklin Manene Adeyemi Abel Ajibesin 《Computers, Materials & Continua》 SCIE EI 2023年第6期4985-5007,共23页
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f... Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset. 展开更多
关键词 Dataset selection false alarm intrusion detection systems IoT security machine learning SDN-IoT security software-defined networks
下载PDF
An Efficient Cyber Security and Intrusion Detection System Using CRSR with PXORP-ECC and LTH-CNN
11
作者 Nouf Saeed Alotaibi 《Computers, Materials & Continua》 SCIE EI 2023年第8期2061-2078,共18页
Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack... Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments. 展开更多
关键词 intrusion detection system logistic tanh-based convolutional neural network classification(LTH-CNN) correlation coefficient based mayfly optimization(CC-MA) cyber security
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
12
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Enhance Intrusion Detection in Computer Networks Based on Deep Extreme Learning Machine 被引量:3
13
作者 Muhammad Adnan Khan Abdur Rehman +2 位作者 Khalid Masood Khan Mohammed A.Al Ghamdi Sultan H.Almotiri 《Computers, Materials & Continua》 SCIE EI 2021年第1期467-480,共14页
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr... Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance. 展开更多
关键词 intrusion detection system DELM network security machine learning
下载PDF
Machine Learning Techniques for Intrusion Detection Systems in SDN-Recent Advances,Challenges and Future Directions 被引量:1
14
作者 Gulshan Kumar Hamed Alqahtani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期89-119,共31页
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)... Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field. 展开更多
关键词 CONTROLLER intrusion detection intrusion detection system OpenFlow security software defined networking traffic analysis
下载PDF
Network-based anomaly intrusion detection with numeric-and-nominal mixed data 被引量:1
15
作者 蔡龙征 余胜生 +1 位作者 王晓锋 周敬利 《Journal of Shanghai University(English Edition)》 CAS 2006年第5期415-420,共6页
Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or... Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or connections, often contain both numeric and nominal features. Both of these features contain important information for intrusion detection. These two features, on the other hand, have different characteristics. This paper presents a new network based anomaly intrusion detection approach that works well by building profiles for numeric and nominal features in different ways. During training, for each numeric feature, a normal profile is build through statistical distribution inference and parameter estimation, while for each nominal feature, a normal profile is setup through statistical method. These profiles are used as detection models during testing to judge whether a data being tested is benign or malicious. Experiments with the data set of 1999 DARPA (defense advanced research project agency) intrusion detection evaluation show that this approach can detect attacks effectively. 展开更多
关键词 anomaly detection intrusion detection network security
下载PDF
A Hybrid Approach for Network Intrusion Detection 被引量:1
16
作者 Mavra Mehmood Talha Javed +4 位作者 Jamel Nebhen Sidra Abbas Rabia Abid Giridhar Reddy Bojja Muhammad Rizwan 《Computers, Materials & Continua》 SCIE EI 2022年第1期91-107,共17页
Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intr... Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intrusion Detection System(NIDS)is required to detect attacks in network traffic.This paper proposes a new hybrid method for intrusion detection and attack categorization.The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization.In the first step,the dataset is preprocessed through the data transformation technique and min-max method.Secondly,the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model’s performance.Next,we use various Support Vector Machine(SVM)types to detect intrusion and the Adaptive Neuro-Fuzzy System(ANFIS)to categorize probe,U2R,R2U,and DDOS attacks.The validation of the proposed method is calculated through Fine Gaussian SVM(FGSVM),which is 99.3%for the binary class.Mean Square Error(MSE)is reported as 0.084964 for training data,0.0855203 for testing,and 0.084964 to validate multiclass categorization. 展开更多
关键词 network security intrusion detection system machine learning ATTACKS data mining classification feature selection
下载PDF
Two Hybrid Methods Based on Rough Set Theory for Network Intrusion Detection
17
作者 Na Jiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第6期22-27,共6页
In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory... In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory.The next phase is clustering by using Fuzzy C-Means.Rough set theory is an efficient tool for further reducing redundancy.Fuzzy C-Means allows the objects to belong to several clusters simultaneously,with different degrees of membership.To evaluate the performance of the introduced approaches,we apply them to the international Knowledge Discovery and Data mining intrusion detection dataset.In the experimentations,we compare the performance of two rough set theory based hybrid methods for network intrusion detection.Experimental results illustrate that our algorithms are accurate models for handling complex attack patterns in large network.And these two methods can increase the efficiency and reduce the dataset by looking for overlapping categories. 展开更多
关键词 rough set theory Fuzzy C-Means network security intrusion detection
下载PDF
An Efficient Stabbing Based Intrusion Detection Framework for Sensor Networks
18
作者 A.Arivazhagi S.Raja Kumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期141-157,共17页
Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the al... Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches. 展开更多
关键词 network security sensor network intrusion detection learning framework linear support vector machine the detection mechanism
下载PDF
Computer network intrusion detection and countermeasures
19
作者 Liguo Xu Jingyuan Chi 《International Journal of Technology Management》 2017年第4期65-67,共3页
Intrusion detection technology is to ensure the security of the computer system and the design and configuration of a can timely detect and report unauthorized or system abnormalities in the technology, which is used ... Intrusion detection technology is to ensure the security of the computer system and the design and configuration of a can timely detect and report unauthorized or system abnormalities in the technology, which is used for a security policy violation behavior detection in computer network technology. Computer database intrusion detection technology refers to the use of computer network resources in the daily use may be used to identify malicious behavior, and its behavior for the corresponding processing and testing process. The process includes not only the invasion outside the system, but also can detect the unauthorized users within the system, thus intrusion detection of computer database technology is very effective for the protection of computer system security. In this paper, the current computer network security risks are analyzed in detail, and expounds the role of computer database intrusion detection technology. 展开更多
关键词 COMPUTER network security intrusion detection COUNTERMEASURE
下载PDF
A New Intrusion Detection Algorithm AE-3WD for Industrial Control Network
20
作者 Yongzhong Li Cong Li +1 位作者 Yuheng Li Shipeng Zhang 《Journal of New Media》 2022年第4期205-217,共13页
In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o... In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection. 展开更多
关键词 Industrial control network security intrusion detection deep learning AutoEncoder three-way decision
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部