A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr...A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.展开更多
A 3 × 3 matrix spectral problem and a Liouville integrable hierarchy are constructed by designing a new subalgebra of loop algebra A^-2. Furthermore, high-order binary symmetry constraints of the corresponding hi...A 3 × 3 matrix spectral problem and a Liouville integrable hierarchy are constructed by designing a new subalgebra of loop algebra A^-2. Furthermore, high-order binary symmetry constraints of the corresponding hierarchy are obtained by using the binary nonlinearization method. Finally, according to another new subalgebra of loop algebra A^-2, its integrable couplings are established.展开更多
A new Lie algebra G and its two types of loop algebras G1 and G2 are constructed. Basing on G1 and G2, two different isospectral problems are designed, furthermore, two Liouville integrable soliton hierarchies are obt...A new Lie algebra G and its two types of loop algebras G1 and G2 are constructed. Basing on G1 and G2, two different isospectral problems are designed, furthermore, two Liouville integrable soliton hierarchies are obtained respectively under the framework of zero curvature equation, which is derived from the compatibility of the isospectral problems expressed by Hirota operators. At the same time, we obtain the Hamiltonian structure of the first hierarchy and the bi-Hamiltonian structure of the second one with the help of the quadratic-form identity.展开更多
Based on the generalization of Lie algebra An- 1, two types of new Lie algebras were worked out and the integrability of the related hierarchies of evolution equations were proved in the sense of Liouville.
Formaldehyde and hydrogen peroxide are two important realistic molecules in atmospheric chemistry.We implement path integral Liouville dynamics(PILD)to calculate the dipolederivative autocorrelation function for obtai...Formaldehyde and hydrogen peroxide are two important realistic molecules in atmospheric chemistry.We implement path integral Liouville dynamics(PILD)to calculate the dipolederivative autocorrelation function for obtaining the infrared spectrum.In comparison to exact vibrational frequencies,PILD faithfully captures most nuclear quantum effects in vibrational dynamics as temperature changes and as the isotopic substitution occurs.展开更多
Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are co...Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out.展开更多
A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedi...A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.展开更多
Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations asso...Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.展开更多
This paper deals with the integrability of a finite-dimensional Hamiltonian system linked with the generalized coupled KdV hierarchy. For this purpose the associated Lax representation is presented after an elementary...This paper deals with the integrability of a finite-dimensional Hamiltonian system linked with the generalized coupled KdV hierarchy. For this purpose the associated Lax representation is presented after an elementary calculation. It is shown that the Lax representation enjoys a dynamical r-matrix formula instead of a classical one in the Poisson bracket on R2N. Consequently the resulting system is proved to be completely integrable in view of its r-matrix structure.展开更多
A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu p...A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.展开更多
A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of t...A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.展开更多
From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equati...From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equation.One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM).展开更多
A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville in...A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hicrarchy of soliton equations is generated, which possesses the multi.component Hamiltonian structures. As its reduction cases, the multi-component C-KdV hierarchy is given. Finally, the multi.component integrable coupling system of C-KdV hierarchy is presented through enlarging matrix spectral problem.展开更多
In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arb...In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arbitrary functions to be certain flmctions and using the trace identity, the generalized Hamiltonian structure of the hierarchy of evolution equations is given, it is shown that this hierarchy of equations is Liouville integrable. Finally some special cases of the isospectral problem are also given.展开更多
The parametric representation for finite-band solutions of a stationary soliton equation is discussed. This parametric representation can be represented as a Hamiltonian system which is integrable in Liouville sense. ...The parametric representation for finite-band solutions of a stationary soliton equation is discussed. This parametric representation can be represented as a Hamiltonian system which is integrable in Liouville sense. The nonconfocal involutive integral representations {Fm} are obtained also The finite-band solutions of the soliton equation can be represented as the solutions of two set of ordinary differential equations.展开更多
Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its...Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained.展开更多
A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensiona...A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.展开更多
Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using th...Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy.展开更多
基金The project supported by the Scientific Research Award Foundation for Outstanding Young and Middle-Aged Scientists of Shandong Province of China
文摘A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy.
基金supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China under Grant No.10471139
文摘A 3 × 3 matrix spectral problem and a Liouville integrable hierarchy are constructed by designing a new subalgebra of loop algebra A^-2. Furthermore, high-order binary symmetry constraints of the corresponding hierarchy are obtained by using the binary nonlinearization method. Finally, according to another new subalgebra of loop algebra A^-2, its integrable couplings are established.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806
文摘A new Lie algebra G and its two types of loop algebras G1 and G2 are constructed. Basing on G1 and G2, two different isospectral problems are designed, furthermore, two Liouville integrable soliton hierarchies are obtained respectively under the framework of zero curvature equation, which is derived from the compatibility of the isospectral problems expressed by Hirota operators. At the same time, we obtain the Hamiltonian structure of the first hierarchy and the bi-Hamiltonian structure of the second one with the help of the quadratic-form identity.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)the Science Foundation of Shanghai Municiple Commission of Education (Grant No.06AZ081)
文摘Based on the generalization of Lie algebra An- 1, two types of new Lie algebras were worked out and the integrability of the related hierarchies of evolution equations were proved in the sense of Liouville.
文摘Formaldehyde and hydrogen peroxide are two important realistic molecules in atmospheric chemistry.We implement path integral Liouville dynamics(PILD)to calculate the dipolederivative autocorrelation function for obtaining the infrared spectrum.In comparison to exact vibrational frequencies,PILD faithfully captures most nuclear quantum effects in vibrational dynamics as temperature changes and as the isotopic substitution occurs.
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under Grant No. J08LI08
文摘Within framework of zero curvature representation theory, a family of integrable rational semi-discrete systems is derived from a matrix spectral problem. The Hamiltonian forms of obtained semi-discrete systems are constructed by means of the discrete trace identity. The Liouville integrability for the obtained family is demonstrated. In the end, a reduced family of obtained semi-discrete systems and its Hamiltonian form are worked out.
基金the Natural Science Foundation of Shandong Province under Grant No.Q2006A04
文摘A semi-direct sum of two Lie algebras of four-by-four matrices is presented,and a discrete four-by-fourmatrix spectral problem is introduced.A hierarchy of discrete integrable coupling systems is derived.The obtainedintegrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity.Finally,we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discreteHamiltonian systems.
基金supported by the "Chunlei" Project of Shandong University of Science and Technology of China under Grant No. 2008BWZ070
文摘Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectrak problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.
文摘This paper deals with the integrability of a finite-dimensional Hamiltonian system linked with the generalized coupled KdV hierarchy. For this purpose the associated Lax representation is presented after an elementary calculation. It is shown that the Lax representation enjoys a dynamical r-matrix formula instead of a classical one in the Poisson bracket on R2N. Consequently the resulting system is proved to be completely integrable in view of its r-matrix structure.
文摘A set of multi-component matrix Lie algebra is constructed. It follows that a type of new loop algebra AM-1 is presented. An isospectral problem is established. Integrable multi-component hierarchy is obtained by Tu pattern, which possesses tri-Hamiltonian structures. Furthermore, it can be reduced to the well-known AKNS hierarchy and BPT hierarchy. Therefore, the major result of this paper can be regarded as a unified expression integrable model of the AKNS hierarchy and the BPT hierarchy.
基金supported by Science Foundation of the Educational Department of Shandong Province of China
文摘A new matrix Lie algebra and its corresponding Loop algebra are constructed firstly,as its application,the multi-component TC equation hierarchy is obtained,then by use of trace identity the Hamiltonian structure of the above system is presented.Finally,the integrable couplings of the obtained system is worked out by the expanding matrix Loop algebra.
基金Supported by the Natural Science Foundation of China under Grant Nos.60971022,61072147,and 11071159the Natural Science Foundation of Shanghai under Grant No.09ZR1410800+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101the National Key Basic Research Project of China under Grant No.KLMM0806
文摘From a new Lie algebra proposed by Zhang, two expanding Lie algebras and its corresponding loop algebrasare obtained.Two expanding integrable systems are produced with the help of the generalized zero curvature equation.One of them has complex Hamiltion structure with the help of generalized Tu formula (GTM).
基金The project supported by the State Key Basic Research Development Program of China under Grant No. 1998030600 and the National Natural Science Foundation of China under Grant No. 10072013
文摘A set of new multi-component matrix Lie algebra is constructed, which is devoted to obtaining a new loop algebra A^-2M. It follows that an isospectral problem is established. By making use of Tu scheme, a Liouville integrable multi-component hicrarchy of soliton equations is generated, which possesses the multi.component Hamiltonian structures. As its reduction cases, the multi-component C-KdV hierarchy is given. Finally, the multi.component integrable coupling system of C-KdV hierarchy is presented through enlarging matrix spectral problem.
基金This work was supported by the National Natural Science Foundation of China(No.10401039)the National Key Basic Research Project of China(No. 2004CB318000)
文摘In this paper, an isospectral problem with five potentials is investigated in loop algebra A2 such that a new hierarchy of evolution equations with five arbitrary functions is obtained. And then by fixing the five arbitrary functions to be certain flmctions and using the trace identity, the generalized Hamiltonian structure of the hierarchy of evolution equations is given, it is shown that this hierarchy of equations is Liouville integrable. Finally some special cases of the isospectral problem are also given.
基金the National Natural Science Fundation of China (No.10071097).
文摘The parametric representation for finite-band solutions of a stationary soliton equation is discussed. This parametric representation can be represented as a Hamiltonian system which is integrable in Liouville sense. The nonconfocal involutive integral representations {Fm} are obtained also The finite-band solutions of the soliton equation can be represented as the solutions of two set of ordinary differential equations.
基金Supported by the Natural Science Foundation of China under Grant Nos.11271008 and 61072147
文摘Starting from a matrix discrete spectral problem, we derive a negative discrete hierarchy. It is shown that the hierarchy is integrable in the Liouville sense and possesses a bi-Hamiltonian structure. Furthermore, its N-fold Darboux transformation is established with the help of gauge transformation of Lax pair. As an application of the Darboux transformation, some new exact solutions for a discrete equation in the negative hierarchy are obtained.
文摘A Bargmann symmetry constraint is proposed for the Lax pairg and the adjoint Lax pairs of the Dirac systems.It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Liouville integrable Hamiltonian system and that nnder the control of the spatial part,the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commntative,finite dimensional Lionville integrable Hamiltonian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part.Moreover an involutive representation of solutions of the Dirac systema exhibits their integrability by quadratures.This kind of symmetry constraint procedure involving the spectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darboux transformation.
基金Supported by the Natural Science Foundation of China under Grant Nos.11271008,61072147,11071159the Shanghai Leading Academic Discipline Project under Grant No.J50101the Shanghai Univ.Leading Academic Discipline Project(A.13-0101-12-004)
文摘Based on a kind of Lie a/gebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy.