Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy...Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.展开更多
[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera...[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera of rice-field eel. [ Result] Na^+ and K ^+ didn't generate big influences on enzyme activity;Mg^2+ and Ca^2+ could promote ALP while Li^+,Cu^2+ and Zn^2+ could restrain ALP enzyme activity. Both HPO4^2- and WO4^2- generated by en- zyme catalyzing disodium phenyl phosphate possessed strong inhibitory effects on emzymc, and 9.5 mmol/L HPO4^2 - would make enzyme activity decline by 13% while 9.5 mmol/L WO4^3- would make enzyme decline by 34%. The inhibition types of them were both competitive inhibition on enzyme activity. The organic solvents such as methanol, ethanol,ethylene glycol,isopropannl all generated influences on ALP and the order according to their inhibitory effects was isopropanol 〉 ethanol 〉 methanol 〉 ethylene glycol. [ Conclusion] The inflncnces of various effeetors on ALP aetivity of rice-field eel were studied from dynamics perspective to provide theoretical basis for further clarifying ALP mechanism.展开更多
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices....With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.展开更多
The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured ...The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.展开更多
The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectiv...The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectively recycle polycrystalline silicon from the kerf loss slurry, an innovative double-layer organic solvent sedimentation process was presented in the paper. The sedimentation velocities of Si and SiC particles in some organic solvents were investigated. Considering the polarity, viscosity, and density of solvents, the chloroepoxy propane and carbon tetrachloride were selected to separate Si and SiC particles. It is found that Si and SiC particles in the slurry waste can be successfully separated by the double-layer organic solvent sedimentation method, which can greatly reduce the sedimentation time and improve the purity of obtained Si-rich and SiC-rich powders. The obtained Si-rich powders consist of 95.04% Si, and the cast Si ingot has 99.06% Si.展开更多
We found a novel lipase gene in the Paenibacillus pasadenensis CS0611 strain.The lipase gene sequence was cloned into the pET-28a expression vector to construct a recombinant lipase protein containing 6×His tags ...We found a novel lipase gene in the Paenibacillus pasadenensis CS0611 strain.The lipase gene sequence was cloned into the pET-28a expression vector to construct a recombinant lipase protein containing 6×His tags at the C-and N-termini,respectively.High-level expression of the lipase in E.coli BL21(DE3)was obtained upon induction with IPTG at 20°C.The recombinant lipase activity was approximately 1631-fold higher than the wild type.His-tagged recombinant lipase was purified rapidly and efficiently by using Ni-charged affinity chromatography with 63.5%recovery and a purification factor of 10.78.The purified lipase was stable in a broad range of temperatures and pH values,with the optimal temperature and pH being 50°C and 7.0,respectively.Its activity was stimulated to different degrees in the presence of metal ions such as Ca2+,Mg2+,and some non-ionic surfactants.In addition,the purified lipase was activated by a series of water-miscible organic solvents such as some short carbon chain alcohols and was highly tolerant to some water-immiscible organic solvents.展开更多
A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenaz...A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenazine. The optimal conditions for laccase in organic media areT=55°C, pH=6.5, 1.0×10?2mol/L OPDA, 1.25 mL ethanol, 1.25 mL 1,4-dioxane and 1.25 mL acetone. The linear range of the method proposed in ethanol, 1,4-dioxane and acetone media were 0.44–19.33, 0.11–20.85, 0.38–21.05 U with the detection limit of 0.088, 0.022, 0.076 U, respectively. The proposed method has been applied to the analysis of laccase activity of real samples with more accurate and sensitive than that of the previous method reported.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area ...Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area manufacturing.Herein,we cast active layers with both aromatic hydrocarbon solvents and halogenated solvents without any solvent additive or post-treatment,as well as interlayers with water and methanol in air(35%relative humidity)for efficient OSCs,except cathode electrode's evaporation is in vacuum.Compared to the PM6:Y6 system that is processed from CF,the PM6:BTP-ClBr2 system demonstrates good efficiency of 16.28%processed from CB and the device based on PM6:BTP-4Cl achieves 16.33%using TMB as its solvent for the active layer.These are among the highest efficiencies for CB-and TMB-processed binary OSCs to date.The molecular packing and phase separation length scales of each combination depend strongly on the solvent,and the overall morphology is the result of the interplay between solvent evaporation(kinetics)and materials miscibility(thermodynamics).Different solvents are required to realize the optimal morphology due to the different miscibility between the donor and acceptor.Finally,17.36%efficiency was achieved by incorporating PC71BM for TMB-processed devices.Our result provides insights into the effect of processing solvent and shows the potential of realizing high-performance OSCs in conditions relevant for industrial fabrication.展开更多
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f...The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.展开更多
A perovskite-type oxide, La0.8Sr0.2MnO3, was synthesized by the organic solvent sol-gel method. The desired metal cations were chelated in a solution by using citric acid as the chelating agent and absolute ethanol as...A perovskite-type oxide, La0.8Sr0.2MnO3, was synthesized by the organic solvent sol-gel method. The desired metal cations were chelated in a solution by using citric acid as the chelating agent and absolute ethanol as the solvent. The thermal decomposition of the metal carboxylate precursor gels was studied by thermogravimetric/differential thermal analyzer (TG/DTA) and the products derived from calcining the gels were characterized by X-ray diffraction (XRD) and transmission electronic microscope (TEM). The polarization curves were acquired on an electrochemical workstation (LK98) and the discharge curves were acquired on a testing instrument of batteries (DC-5), with a constant current discharge, less than 120 mA/cm^2. The results revealed that the nanometer perovskite-type powder with lesser particle size could be achieved with an organic solvent and had a better catalytic activity.展开更多
Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate ...Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate that those organic solvents will not have negative effect on the applied capability of SrAl2O4:Eu2+ , Dy3+ phosphor. Adopting the organic resins and covering method, the afterglow luminance of SrAl2O4:Eu2+ , Dy3+ phosphor was increased by 85.01% and 82.51%.展开更多
The decomposition of radioactive Spent Organic Solvent (SOS) was conducted successfully in bench scale tests. The experiment results showed that TBP/OK can be decomposed under with in H 2O 2 Fe 2+ /TiO 2 H ...The decomposition of radioactive Spent Organic Solvent (SOS) was conducted successfully in bench scale tests. The experiment results showed that TBP/OK can be decomposed under with in H 2O 2 Fe 2+ /TiO 2 H 2SO 4 systems under suitable H 2O 2 concentration, catalyst, temperature and pH. The free radical oxidation reaction mechanism using H 2O 2 under the action of the synergistic catalysis TiO 2/Fe 2+ was also discussed briefly.展开更多
The toluene oxidative bromination reaction catalyzed by hollow titanium silicalite(HTS)zeolite in aqueous medium was investigated by employing H2O2 and HBr under mild conditions without the need for organic solvent.A ...The toluene oxidative bromination reaction catalyzed by hollow titanium silicalite(HTS)zeolite in aqueous medium was investigated by employing H2O2 and HBr under mild conditions without the need for organic solvent.A high toluene conversion(90.7%)and high selectivity of mono-bromotoluene(99.0%)was achieved under the optimal reaction conditions.The UV-Raman spectroscopy was applied for the mechanism study and the result reveals that HTS is efficient for catalyzing the oxidation reaction of HBr with H2O2 to produce abundant active bromine species,which can further facilitate the toluene electrophilic bromination reaction.A two-step toluene bromination reaction mechanism involving the HTS catalyzed active bromine species“generation-conversion-utilization”process is proposed based on the UV-Raman spectroscopy analysis.展开更多
The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl p...The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl phthalate were proved to be suitable solvents .The optimal volumetric percentage of organic solvents in the culture medium was found to be around 8%,and the favorable time for their introduction was at the exponential phase of cell growth,Paclitaxel production with the in situ extraction was ca 3-fold of that without extraction.展开更多
Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent,...Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent, volume ratio of water phase to organic phase, pH value of aqueous phase and reaction temperature on the initial reaction rate, maximum yield and enantiomeric excess (ee) of the product were systematically explored. All the above-mentioned factors had significant influence on the reaction. n-Hexane was found to be the best organic solvent for the reaction. The optimum shake speed, volume ratio of water phase to organic phase, pH value and reaction temperature were 150 r.min-1, 1/2, 8 and 30 ℃ respectively, under which the maximum yield and enantiomeric excess of the product were as high as 96.8% and 95.7%, which are 15% and 16% higher than those of the corresponding reaction performed in aqueous phase. To our best knowledge, this is the most satisfactory result obtained.展开更多
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relations...The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.展开更多
Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been inves...Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.展开更多
The effect of different types of organic solvents on the structural integrity of M13 phages has been directly visualized by transmission and scanning electron microscopy. The exposure of M13 phages to apolar hexane ha...The effect of different types of organic solvents on the structural integrity of M13 phages has been directly visualized by transmission and scanning electron microscopy. The exposure of M13 phages to apolar hexane had no effect on the structure of the phages for up to 8 h. In contrast, phages showed ~10-fold contraction into rod-like I-forms and to flattened spheroids with ~12 nm diameter upon exposure to polar organic solvents. We show that this finding can be beneficial for the macromolecular self-assembly and in broader aspects, to enhance the spatial arrangement of desired inorganic nanoparticles in the rapidly developing field of virotronics.展开更多
Compared to bulk heterojunction(BHJ)organic solar cells(OSCs)prepared by the blend casting in“one step process”,sequential deposition(SD)processed OSCs can realize an ideal profile of vertical component distribution...Compared to bulk heterojunction(BHJ)organic solar cells(OSCs)prepared by the blend casting in“one step process”,sequential deposition(SD)processed OSCs can realize an ideal profile of vertical component distribution due to the swelling of polymer films.Herein,we did trials on several kinds of second solvents for swelling the polymer layer,and investigated the packing structure and morphology of the swollen films and the performance of the resulting devices.We found that an optimized morphology can be achieved by solvent swelling while using orthodichlorobenzene(o-DCB)as the second layer processing-solvent,with polymer donor PffBT-3 as bottom layer,PC71BM as top layer and bicontinuous networks in the middle.Such solvent swelling process also makes the SD method exempt from thermal annealing treatment.The device based on SD yields a power conversion effi-ciency(PCE)up to 8.7%without any post-treatment,outperforming those from the devices based on SD using other solvents and that(7.06%)from BHJ device,respectively.We also extended the use of this approach to allpolymer blend system,and successfully improved the efficiency from 4.72%(chloroform)to 9.35%(o-DCB),which is among the highest PCEs in all-polymer-based OSCs fabricated with SD method.The results demonstrate that the swelling of the polymer by the second layer solvent is a necessity for SD,paving the way towards additivefree high-performance OSCs.展开更多
基金funded by the National Key Research and Development Program of China(2018YFA0900702).
文摘Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.
基金Science and Techndogy Fund of Chongqing Science and Technology cmmission~~
文摘[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera of rice-field eel. [ Result] Na^+ and K ^+ didn't generate big influences on enzyme activity;Mg^2+ and Ca^2+ could promote ALP while Li^+,Cu^2+ and Zn^2+ could restrain ALP enzyme activity. Both HPO4^2- and WO4^2- generated by en- zyme catalyzing disodium phenyl phosphate possessed strong inhibitory effects on emzymc, and 9.5 mmol/L HPO4^2 - would make enzyme activity decline by 13% while 9.5 mmol/L WO4^3- would make enzyme decline by 34%. The inhibition types of them were both competitive inhibition on enzyme activity. The organic solvents such as methanol, ethanol,ethylene glycol,isopropannl all generated influences on ALP and the order according to their inhibitory effects was isopropanol 〉 ethanol 〉 methanol 〉 ethylene glycol. [ Conclusion] The inflncnces of various effeetors on ALP aetivity of rice-field eel were studied from dynamics perspective to provide theoretical basis for further clarifying ALP mechanism.
基金R.Ma thanks the support from PolyU Distinguished Postdoc Fellowship(1-YW4C)Z.Luo thanks the National Natural Science Foundation of China(NSFC,No.22309119)+7 种基金J.Wu thanks the Guangdong government and the Guangzhou government for funding(2021QN02C110)the Guangzhou Municipal Science and Technology Project(No.2023A03J0097 and 2023A03J0003)H.Yan appreciates the support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST,the Basic and Applied Research Major Program of Guangdong Province(No.2019B030302007)the Shen Zhen Technology and Innovation Commission through(Shenzhen Fundamental Research Program,JCYJ20200109140801751)the Hong Kong Research Grants Council(research fellow scheme RFS2021-6S05,RIF project R6021-18,CRF project C6023‐19G,GRF project 16310019,16310020,16309221,and 16309822)Hong Kong Innovation and Technology Commission(ITC‐CNERC14SC01)Foshan‐HKUST(Project NO.FSUST19‐CAT0202)Zhongshan Municipal Bureau of Science and Technology(NO.ZSST20SC02)and Tencent Xplorer Prize。
文摘With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future.
基金supported by the National Basic Re-search Program (973) of China (No. 2007CB407303)the National Natural Science Foundation of China (No.40525016)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06A301).
文摘The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.
基金financially supported by the National Natural Science Foundation of China(No.51074043)the National Key Technology R&D Program(No.2011BAE03B00)the Fundamental Research Funds for the Central Universities(No.N120409004)
文摘The rapid development of photovoltaic (PV) industries has led to a shortage of silicon feedstock. However, more than 40% silicon goes into slurry wastes due to the kerf loss in the wafer slicing process. To effectively recycle polycrystalline silicon from the kerf loss slurry, an innovative double-layer organic solvent sedimentation process was presented in the paper. The sedimentation velocities of Si and SiC particles in some organic solvents were investigated. Considering the polarity, viscosity, and density of solvents, the chloroepoxy propane and carbon tetrachloride were selected to separate Si and SiC particles. It is found that Si and SiC particles in the slurry waste can be successfully separated by the double-layer organic solvent sedimentation method, which can greatly reduce the sedimentation time and improve the purity of obtained Si-rich and SiC-rich powders. The obtained Si-rich powders consist of 95.04% Si, and the cast Si ingot has 99.06% Si.
文摘We found a novel lipase gene in the Paenibacillus pasadenensis CS0611 strain.The lipase gene sequence was cloned into the pET-28a expression vector to construct a recombinant lipase protein containing 6×His tags at the C-and N-termini,respectively.High-level expression of the lipase in E.coli BL21(DE3)was obtained upon induction with IPTG at 20°C.The recombinant lipase activity was approximately 1631-fold higher than the wild type.His-tagged recombinant lipase was purified rapidly and efficiently by using Ni-charged affinity chromatography with 63.5%recovery and a purification factor of 10.78.The purified lipase was stable in a broad range of temperatures and pH values,with the optimal temperature and pH being 50°C and 7.0,respectively.Its activity was stimulated to different degrees in the presence of metal ions such as Ca2+,Mg2+,and some non-ionic surfactants.In addition,the purified lipase was activated by a series of water-miscible organic solvents such as some short carbon chain alcohols and was highly tolerant to some water-immiscible organic solvents.
文摘A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenazine. The optimal conditions for laccase in organic media areT=55°C, pH=6.5, 1.0×10?2mol/L OPDA, 1.25 mL ethanol, 1.25 mL 1,4-dioxane and 1.25 mL acetone. The linear range of the method proposed in ethanol, 1,4-dioxane and acetone media were 0.44–19.33, 0.11–20.85, 0.38–21.05 U with the detection limit of 0.088, 0.022, 0.076 U, respectively. The proposed method has been applied to the analysis of laccase activity of real samples with more accurate and sensitive than that of the previous method reported.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金financial support from National Natural Science Foundation of China 21927811support from the National Key Research and Development Program of China(No.2019YFA0705900)funded by MOST+7 种基金the Basic and Applied Basic Research Major Program of Guangdong Province(No.2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(project number 2019B121205002)the Shen Zhen Technology and Innovation Commission(project number JCYJ20170413173814007,JCYJ20170818113905024)the Hong Kong Research Grants Council(Research Impact Fund R6021-18,collaborative research fund C6023-19G,project numbers 16309218,16310019,and 16303917)Hong Kong Innovation and Technology Commission for the support through projects ITC-CNERC14SC01 and ITS/471/18National Natural Science Foundation of China(NSFC,No.91433202)support from Natural Science Foundation of Top Talent of SZTU(grant number:20200205)support from Hong Kong Ph D Fel owship Scheme PF17-03929。
文摘Most of the recent organic solar cells(OSCs)with top-of-the-line efficiencies are processed from organic solvents with a high vapor pressure such as CF in nitrogen-filled glovebox,which is not feasible for large-area manufacturing.Herein,we cast active layers with both aromatic hydrocarbon solvents and halogenated solvents without any solvent additive or post-treatment,as well as interlayers with water and methanol in air(35%relative humidity)for efficient OSCs,except cathode electrode's evaporation is in vacuum.Compared to the PM6:Y6 system that is processed from CF,the PM6:BTP-ClBr2 system demonstrates good efficiency of 16.28%processed from CB and the device based on PM6:BTP-4Cl achieves 16.33%using TMB as its solvent for the active layer.These are among the highest efficiencies for CB-and TMB-processed binary OSCs to date.The molecular packing and phase separation length scales of each combination depend strongly on the solvent,and the overall morphology is the result of the interplay between solvent evaporation(kinetics)and materials miscibility(thermodynamics).Different solvents are required to realize the optimal morphology due to the different miscibility between the donor and acceptor.Finally,17.36%efficiency was achieved by incorporating PC71BM for TMB-processed devices.Our result provides insights into the effect of processing solvent and shows the potential of realizing high-performance OSCs in conditions relevant for industrial fabrication.
基金the Partnership for Skills in Applied Sciences,Engineering and Technology(PASET)-Regional Scholarship Innovation Fund(RSIF)(World Bank PASET No.IP22-15)supported by the National Research Foundation(NRF)(NRF-2021R1A2C2091787 and NRF-2022M3H4A1A03076280)+1 种基金the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.KS2422-10)the National Research Council of Science and Technology(Grant No.Global-23-007)of Republic of Korea。
文摘The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.
文摘A perovskite-type oxide, La0.8Sr0.2MnO3, was synthesized by the organic solvent sol-gel method. The desired metal cations were chelated in a solution by using citric acid as the chelating agent and absolute ethanol as the solvent. The thermal decomposition of the metal carboxylate precursor gels was studied by thermogravimetric/differential thermal analyzer (TG/DTA) and the products derived from calcining the gels were characterized by X-ray diffraction (XRD) and transmission electronic microscope (TEM). The polarization curves were acquired on an electrochemical workstation (LK98) and the discharge curves were acquired on a testing instrument of batteries (DC-5), with a constant current discharge, less than 120 mA/cm^2. The results revealed that the nanometer perovskite-type powder with lesser particle size could be achieved with an organic solvent and had a better catalytic activity.
文摘Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate that those organic solvents will not have negative effect on the applied capability of SrAl2O4:Eu2+ , Dy3+ phosphor. Adopting the organic resins and covering method, the afterglow luminance of SrAl2O4:Eu2+ , Dy3+ phosphor was increased by 85.01% and 82.51%.
文摘The decomposition of radioactive Spent Organic Solvent (SOS) was conducted successfully in bench scale tests. The experiment results showed that TBP/OK can be decomposed under with in H 2O 2 Fe 2+ /TiO 2 H 2SO 4 systems under suitable H 2O 2 concentration, catalyst, temperature and pH. The free radical oxidation reaction mechanism using H 2O 2 under the action of the synergistic catalysis TiO 2/Fe 2+ was also discussed briefly.
基金The author thanks for the financial support of SINOPEC Corporation(S413108).
文摘The toluene oxidative bromination reaction catalyzed by hollow titanium silicalite(HTS)zeolite in aqueous medium was investigated by employing H2O2 and HBr under mild conditions without the need for organic solvent.A high toluene conversion(90.7%)and high selectivity of mono-bromotoluene(99.0%)was achieved under the optimal reaction conditions.The UV-Raman spectroscopy was applied for the mechanism study and the result reveals that HTS is efficient for catalyzing the oxidation reaction of HBr with H2O2 to produce abundant active bromine species,which can further facilitate the toluene electrophilic bromination reaction.A two-step toluene bromination reaction mechanism involving the HTS catalyzed active bromine species“generation-conversion-utilization”process is proposed based on the UV-Raman spectroscopy analysis.
基金Supported by the National Natural Science Foundation of China(No.20028607).
文摘The production of paclitaxel from suspension culture of Taxus chinensis var,mairei was improved by in situ extraction with organic solvents to avoid feedback repression and product degradation.Oleic acid and dibutyl phthalate were proved to be suitable solvents .The optimal volumetric percentage of organic solvents in the culture medium was found to be around 8%,and the favorable time for their introduction was at the exponential phase of cell growth,Paclitaxel production with the in situ extraction was ca 3-fold of that without extraction.
基金Supported by the National Natural Science Foundation of China(No.20076019)the Natural Science Foundation of Guang-dong Province(No.000444).
文摘Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent, volume ratio of water phase to organic phase, pH value of aqueous phase and reaction temperature on the initial reaction rate, maximum yield and enantiomeric excess (ee) of the product were systematically explored. All the above-mentioned factors had significant influence on the reaction. n-Hexane was found to be the best organic solvent for the reaction. The optimum shake speed, volume ratio of water phase to organic phase, pH value and reaction temperature were 150 r.min-1, 1/2, 8 and 30 ℃ respectively, under which the maximum yield and enantiomeric excess of the product were as high as 96.8% and 95.7%, which are 15% and 16% higher than those of the corresponding reaction performed in aqueous phase. To our best knowledge, this is the most satisfactory result obtained.
基金Supported by the National Nature Science Foundation of China (No. 20176003)
文摘The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process.
基金the National Natural Science Foundation of China(51273041)
文摘Physical properties including refractive index, density, viscosity and conductivity for binary mixtures of l-butyl- 3-methyl imidazolium chloride ([BMIM]CI) and different organic solvents at 298.15 K have been investigated. Ex- cess molar volumes have been calculated and obtained data has been fitted by the Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration of [BMIM]CI, however, excep- tions do exist as in the case of dimethyl sulfoxide (DMSO)/[BMIM]CI. For DMSO/[BMIM]CI, the density decreases with increasing concentration. The addition of different organic solvents was able to disrupt the interactions within mixtures, leading to free mobility of ions. The free mobility of ions has been found to enhance conductivity and decrease viscosity to varying extents in all mixtures studied. It has been observed that solubility parameters, dielectric constants and composition of the solvents used play a vital role in determining the resultant properties. The data obtained will play an important role in understanding the effect of the addition of organic solvents in ILs to enhance their applicability.
文摘The effect of different types of organic solvents on the structural integrity of M13 phages has been directly visualized by transmission and scanning electron microscopy. The exposure of M13 phages to apolar hexane had no effect on the structure of the phages for up to 8 h. In contrast, phages showed ~10-fold contraction into rod-like I-forms and to flattened spheroids with ~12 nm diameter upon exposure to polar organic solvents. We show that this finding can be beneficial for the macromolecular self-assembly and in broader aspects, to enhance the spatial arrangement of desired inorganic nanoparticles in the rapidly developing field of virotronics.
基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the National Natural Science Foundation of China(21801124 and 21774055)+1 种基金the Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)the support of Guangdong Provincial Key laboratory Program(2021B1212040001)from the Department of Science and Technology of Guangdong Province.
文摘Compared to bulk heterojunction(BHJ)organic solar cells(OSCs)prepared by the blend casting in“one step process”,sequential deposition(SD)processed OSCs can realize an ideal profile of vertical component distribution due to the swelling of polymer films.Herein,we did trials on several kinds of second solvents for swelling the polymer layer,and investigated the packing structure and morphology of the swollen films and the performance of the resulting devices.We found that an optimized morphology can be achieved by solvent swelling while using orthodichlorobenzene(o-DCB)as the second layer processing-solvent,with polymer donor PffBT-3 as bottom layer,PC71BM as top layer and bicontinuous networks in the middle.Such solvent swelling process also makes the SD method exempt from thermal annealing treatment.The device based on SD yields a power conversion effi-ciency(PCE)up to 8.7%without any post-treatment,outperforming those from the devices based on SD using other solvents and that(7.06%)from BHJ device,respectively.We also extended the use of this approach to allpolymer blend system,and successfully improved the efficiency from 4.72%(chloroform)to 9.35%(o-DCB),which is among the highest PCEs in all-polymer-based OSCs fabricated with SD method.The results demonstrate that the swelling of the polymer by the second layer solvent is a necessity for SD,paving the way towards additivefree high-performance OSCs.