Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-si...Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.展开更多
To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots o...To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots of two maize genotypes, HZ32 (waterlogging-tolerant) and K12 (waterlogging-sensitive). Potted maize plants were waterlogged at the second leaf stage under glasshouse conditions. Leaves and roots were harvested 1 d before and 2, 4, 6, 8 and 10 d after the start of waterlogging treatment. Through comparing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (POD) between waterlogging-tolerant and waterloggingsensitive genotype, we deduced that CAT was the most important H2O2 scavenging enzyme in leaves, while APX seemed to play a key role in roots. POD, APX, GR and CAT activities in conjunction with SOD seem to play an essential protective role in the O2^- and H2O2 scavenging process. Lipid peroxidation was enhanced significantly only in K12 (P 〈 0.001) and there was no difference (P 〉 0.05) in HZ32 up to 6 d after waterlogging stress. These results indicated that oxidative stress may play an important role in waterlogging-stressed maize plants and that the greater protection of HZ32 leaves and roots from waterlogging-induced oxidative damage results, at least in part, through the maintenance of increased antioxidant enzyme activity.展开更多
In order to increase vegetable productivity by improving environmental conditions, this article investigates the effects of exogenous silicon on the activities of major antioxidant enzymes and on lipid peroxidation un...In order to increase vegetable productivity by improving environmental conditions, this article investigates the effects of exogenous silicon on the activities of major antioxidant enzymes and on lipid peroxidation under chilling stress, and it examines whether silicon-induced chilling tolerance is mediated by an increase in antioxidant activity. Cucumis sativus cv. Jinchun 4 was hydroponically cultivated to the two-leaf stage, at which point seedlings were watered with different concentrations of silicon (0, 0.1 and 1 mmol L^-1) and separately exposed to normal (25/18℃) or chilling (15/8℃) temperatures for six days under low light (100μmol m^-2 s^-9. Data were collected from the second leaves on the percentage of withering and the levels of endogenous silicon, malondialdehyde (MDA), hydrogen peroxide (H202), superoxide radical (O2^.-), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GSH-Px, EC 1.11.1.9), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), glutathione reductase (GR, EC 1.6.4.2), reduced glutathione (GSH) and ascorbate (AsA). Compared to normal temperatures, chilling resulted in partially withered leaves and increased MDA content. When 0.1 or 1 mmol L^-1 exogenous silicon was combined with chilling, the withering of the cucumber leaves was reduced relative to the original chilling treatment, while the endogenous silicon content was increased, antioxidants such as SOD, GSH-Px, APX, MDHAR, GR, GSH, and AsA were more active, and the levels of H2O2, O2^.-, and MDA were lower. We propose that exogenous silicon leads to greater deposition of endogenous silicon and thereby increases antioxidant activities and reduces lipid peroxidation induced by chilling.展开更多
On the basis of the phytotron, the effects of high temperature (daily average temperature 25, 30, 35 and 40℃, respectively) on antioxidant enzymes and lipid peroxidation in flag leaves of wheat at 50% relative air ...On the basis of the phytotron, the effects of high temperature (daily average temperature 25, 30, 35 and 40℃, respectively) on antioxidant enzymes and lipid peroxidation in flag leaves of wheat at 50% relative air moisture during grain fastest filling stage [19-21 days after anthesis (DAA)] were studied. The wheat cultivars tested were Yangmai 9 with weak-gluten and Yangmai 12 with medium-gluten. Compared with 25℃, the higher the temperature was, the higher was the MDA content in flag leaves, while lower were the SOD, POD, and CAT activities. SOD and CAT activities in Yangmai 12 appeared to be more sensitive to high temperature than that in Yangmai 9. But POD activity in Yangmai 12 was less sensitive to high temperature. MDA content in Yangmai 12 was higher than that in Yangmai 9. The 1000-grain weight declined with increase in temperature.展开更多
Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous...Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.展开更多
In mammals, lactation is the most energetically demanding period of a female’s reproductive life. This study was designed to evaluate the effect of fermented Soya bean and Vitamin C supplement on lipid peroxidation a...In mammals, lactation is the most energetically demanding period of a female’s reproductive life. This study was designed to evaluate the effect of fermented Soya bean and Vitamin C supplement on lipid peroxidation and antioxidant enzymes in lactating albino rats. Thirty five (35) adult female rats were used for this study. At parturition, the animals were randomly divided into five groups of five (5) rats each. Except group four (4) that was subdivided into three (3) sub groups of five animals each (n = 5). Treatment was carried out as follows: Group I: (Normal control) was given normal feed and distilled water, orally (1 ml/kg), Group II: metoclopramide (5 mg/kg), Group III: 100 mg/kg of Vitamin C. The three (3) sub groups under group four (4) received 10%, 20% and 40% soya bean, respectively, Group V: was co-administered with 20% soya bean supplement and Vitamin C (100 mg/kg). Treatment was done for the period of ten (10) days at 06:00 h daily. Although there was an increase in serum MDA concentrations in all the treated groups compared to the control, lipid peroxidation was however significantly higher (P < 0.05) in the metoclopramide group relative to the soya bean supplemented groups. This study has shown that supplementation with soya bean induces a mild antioxidant effect by increasing serum level of superoxide dismutase. There was however a significant decrease in serum SOD in the 10% SB group compared to the control. There was a significant difference in serum catalase activity in the group treated with METCL (46.20 ± 1.53), SB 10% (44.00 ± 1.14) and SB 20% (45.20 ± 1.28) compared to the control (52.00 ± 0.71) (P < 0.05). Serum level of glutathione peroxidase GPx showed a significant difference in the group treated with VIT C, SB 10% and SB 20% compared to the control (P < 0.05).展开更多
Rats were exposed to1 or 10 μg/mL bisphenol A (BPA) in water during pregnancy and lactation. Offspring rats were given normal water and a standard diet from weaning to postnatal day (PND) 50. Perinatal exposure t...Rats were exposed to1 or 10 μg/mL bisphenol A (BPA) in water during pregnancy and lactation. Offspring rats were given normal water and a standard diet from weaning to postnatal day (PND) 50. Perinatal exposure to BPA resulted in significantly increased body weight, visceral adipose tissue, abnormal serum lipids, and lower adiponectin (ADP) levels in both female and male offspring rats. Liver adipose triglyceride lipase (Atgl) mRNA levels and ADP protein in visceral adipose tissue were significantly decreased in BPA-exposed offspring rats. In both female or male offspring rats, obesity and dyslipidemia induced by perinatal exposure to BPA were associated with down regulation of Atgl mRNA in liver and ADP protein in visceral adipose tissue.展开更多
Changes of and correlation among root tolerance index (RTI), root Aluminum (Al) content, root/shoot ratio (RSR), root malondialdehyde (MDA) content, and Superoxide dismutase (SOD) and peroxidase (POD) isoforms of maiz...Changes of and correlation among root tolerance index (RTI), root Aluminum (Al) content, root/shoot ratio (RSR), root malondialdehyde (MDA) content, and Superoxide dismutase (SOD) and peroxidase (POD) isoforms of maize YQ 7-96 were investigated under Al stress and removal of the stress (RS). Consequently, Al stress led to significant decreases in RTI, RSR, SOD and POD activities, but resulted in significant increase in root MD A and, Al accumulation in the tissues;Root SOD and POD activities did not correlate with Al and MDA contents in roots;The activities of SOD and POD were much lower in roots than in leaves. It can be concluded that (1) Al stress can lead to lipid peroxidation;(2) there is a larger POD family composed of different POD isoforms, some of which are of tissue-specific expression and play different roles in detoxification of Al in maize;(3) for POD isoforms, POD 2 is root-specific. POD 6 and POD 7 are all leaf-specific, POD 5 is not only root-specific but also RS-responsive;(4) high sensitivity of maize to Al is in part associated with much lower activities of both SOD and POD in roots;and (5) more importantly, both SOD and POD are therefore hinted to be not key players in prevention against Al-induced lipid peroxidation.展开更多
The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by incr...The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by increased salt treatments in both cultivars, and at 140 and 210 mM salt treatments, Zhongmu 1 had significantly higher root, shoot, and leaf dry weights per plant than Deft. The malondialdehyde (MDA) accumulation in Deft was considerably greater than in Zhongmu 1, indicating a higher degree of lipid peroxidation at 140 and 210 mM salt treatments. The changes in the activity and active isoforms of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APOX, EC 1.11,1.11), accumulation of free proline, and rate of lipid peroxidation in leaves of two alfalfa cultivars were also investigated. After stress, the activity and active isoforms of antioxidative enzymes were altered and the extent of alteration varied between the cultivar Deft and Zhongmu 1. The proline accumulation in Deft was considerably greater than in Zhongmu 1 at 210 mM salt treatment. This indicated that proline accumulation may be the result, instead of the cause, of salt tolerance.展开更多
A systematic study was conducted to determine the effects of water stress on the activities of protective enzymes and lipid peroxidation in maize. The results showed that, under water stress, the activities of superox...A systematic study was conducted to determine the effects of water stress on the activities of protective enzymes and lipid peroxidation in maize. The results showed that, under water stress, the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots increased sharply at prophase and metaphase growth stages, such as, male tetrad stage, but then declined towards the physiological maturity. The protective enzyme activities in roots were lower than those in leaves. The content of malondialdehyde (MDA) increased according to the severity of water stress. The content of MDA in roots was lower than that in leaves. The activities of protective enzymes and lipid peroxidation in roots were positively related to that in leaves with most of the correlation coefficients being significant. The content of soluble proteins in roots and leaves decreased with increasing drought stress. The ear characteristics deteriorated and the economic yields of maize decreased significantly under water stress. The main factors that caused reduction of yields were the decrease in the number of ear kernels and 100-kernel weight.展开更多
The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with ...The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L^-1 CaCl2, 150 mmol L^-1 NaCl, and/or 5 mmol L^-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaC1 (150 mmol L^-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaC1 treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L^-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaC1 on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca^2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of EGTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. EGTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaC1 stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.展开更多
Objective:To investigate the phenolic compounds composition and the inhibitory activity of Mangifera indica(M.indica) and Mucuna urens(M.urens) seeds extracts against some key enzymes(-amylase,-glucosidasc and aldose ...Objective:To investigate the phenolic compounds composition and the inhibitory activity of Mangifera indica(M.indica) and Mucuna urens(M.urens) seeds extracts against some key enzymes(-amylase,-glucosidasc and aldose reductase) implicated in the pathology and complications of type 2 diabetes in vitro.Methods:Reverse phase chromatographic quantification of the major flavonoids and phenolic acids in the seeds extracts was carried out using high performance liquid chromatography coupled with diode array detection.The inhibitory activities of the seeds extracts against-amylase and-glucosidase were estimated using soluble starch and p-nitrophenylglucopyranosidc as their respective substrates.Inhibition of aldose reductase activity by the extracts was assayed using partially purified lens homogenate of normal male rat as source of enzyme;inhibition of Fe^(2+)-induced lipid peroxidation by extracts was tested in rat pancreas homogenate.Results:The chromatography result revealed that extracts of both seeds had appreciable levels of some major flavonoids and phenolic acids of pharmacological importance,including gallic acid,chlorogenic acid,caffeic acid,ellagic acid,catechin,rutin,quercitrin.quercetin and kaempferol.Extracts of both seeds effectively inhibited-amylase,-glucosidase and aldose reductase activities in a dose-dependent manner,having inhibitory preference for these enzymes in the order of aldose reductase>-glucosidase>-amylase.With lower half-maximal inhibitory concentrations(IC50)against-amylase,-glucosidase,and aldose reductase,M.indica had stronger inhibitory potency against these enzymes than M.urens.Extracts of both seeds also inhibited Fe2+-induced lipid peroxidation in a dose-dependent pattern,with M.indica being more potent than M.urens.Conclusions:The results obtained provide support for a possible use of M.indica and M.urens seeds in managing hyperglycemia and preventing the complications associated with it in type 2diabetes.展开更多
The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, th...The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxi- fication enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P subcordiformis in all BaP-treated groups. In 1. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then de- creased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in/. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P subcordiformis in all BaP- treated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.展开更多
An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different co...An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different concentrations of protein(40%,47%,or 54%) and lipids(5%,9%,or 13%) in a 3 × 3 factorial experimental design were tested in triplicate groups of fish,while the protein-to-energy(P/E) ratios of the diets varied in the range of 19.74–28.32 mg k J^(-1).Results showed that fish fed diets containing 9% or 13% lipids with 54% protein exhibited significantly higher weight gains and specific growth rates than those fed other diets.The feed conversion rate of fish fed the diet with 40% protein and 5% lipids was significantly poorer than that of fish fed other diets.The protein efficiency rate of fish fed diets with 5% lipids was significantly lower than that of fish fed 9% or 13% lipid diets.Carcass lipid and energy contents were positively correlated with dietary lipid level regardless of protein level.Fish fed a 54% protein diet showed the highest trypsin activity.The intestinal lipase activity of fish fed the diet containing 13% lipids was significantly higher than that of fish fed 5% or 9% lipid diets.These results demonstrate the high protein dietary requirements of N.albiflora.A diet containing 54% protein and 9%–13% lipids with a P/E ratio of 26.2–27.81 mg protein k J^(-1) can be considered optimal for juvenile N.albiflora.展开更多
The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. ...The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. cv Zhongyou 821) plants were examined using solution culture experiment. Compared to the 20 mmol B m -3 treatment, boron deficient treatment (2 mmol B m -3 ) decreased root dry weight and increased the rate of solute leakage and malondialdehyde (MDA) concentration in the roots of rape. Similar patterns of change were observed in the level of lipid peroxidation (MDA concentration) and the rate of solute leakage under boron deficiency. Results suggested that a significant alteration of membrane composition had occurred under B deficiency. The concentration of putrescine and the ratio of putrescine to spermidine + spermine in the roots of rape increased significantly, and the activities of superoxide dismutase and catalase decreased in the roots of rape during B deficiency. But peroxidase activity in root of B deficient plant was higher than that of control plant.展开更多
The aim of the study is to determine whether grafting could improve antioxidant enzyme activities and polyamine contents in leaves of cucumber plants(Cucumis sativus L.cv.Xintaimici) under copper stress.Grafted(usi...The aim of the study is to determine whether grafting could improve antioxidant enzyme activities and polyamine contents in leaves of cucumber plants(Cucumis sativus L.cv.Xintaimici) under copper stress.Grafted(using Cucurbita ficifolia as rootstock) and ungrafted cucumber seedlings were cultured in deep flow technique(DFT) with the Cu2+ concentration of 40 μmol L-1.The results showed that on the 9th day of copper stress treatment,the contents of malondialdehyde(MDA) and hydrogen peroxide(H2O2),superoxide radical() producing rate,and electrolyte leakage percentage were significantly lower in grafted seedlings in comparison to those of the ungrafted seedlings,whereas the activities of antioxidants such as superoxide dismutase(SOD,EC 1.15.1.1),peroxidase(POD,EC 1.11.1.7),ascorbate peroxidase(APX,EC 1.11.1.11),catalase(CAT,EC 1.11.1.6),glutathione reductase(GR,EC 1.6.4.2),and monodehydroascorbate reductase(MDHAR,EC 1.6.5.4) of grafted seedlings were also significantly higher than that of ungrafted seedlings,and the contents of free proline and soluble protein of grafted seedlings were significantly higher than that of ungrafted seedlings.Cu2+ treatment increased the putrescine(Put) level and lowered the spermidine(Spd) and spermine(Spm) levels,thereby reducing the Put/(Spd + Spm) ratio in leaves of grafted and ungrafted seedlings.Grafting markedly reversed these Cu-induced effects for all three PAs and partially restored the Put/(Spd + Spm) ratio in leaves.These results suggest that grafting can enhance the tolerance of cucumber seedlings to Cu2+ stress by increasing the activities of antioxidants and the levels of endogenous Spd and Spm,decreasing the Put/(Spd + Spm) ratio and the levels of ROS,promoting free proline and soluble protein synthesis in cucumber seedling leaves.展开更多
Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied un...Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied under low phosphorus stress with sandy culture. Results indicated that low-phosphorus stress aggravated the membrane lipid peroxidation in rice leaves, and it was more severe in low-phosphorus-sensitive cultivars than that in low-phosphorus-tolerant eultivars. During the period of low-phosphorus stress, the activities of SOD, CAT and POD maintained relatively stable in low-phosphorustolerant cultivars, whereas those increased obviously at early stage and subsequently decreased rapidly in the low-phosphorus-sensitive cultivars, suggesting that the absolute activities of protective enzymes had no relation with the low-phosphorus stress, while the changing trend was reverse.展开更多
Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence ...Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen(N)and phosphorus(P)fertilizers.To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice,we used Nanjing 9108(NJ9108,japonica)and IR72(indica)rice as experimental materials and four K levels:K0(0 kg ha^(-1)),K1(90 kg ha^(-1)),K2(135 kg ha^(-1))and K3(180 kg ha^(-1)).The results showed that the lipid content,free fatty acid(FFA)content,unsaturated fatty acid(UFA)content,malonyl-CoA(MCA)content,phosphatidic acid(PA)content,lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars.The maximum values were obtained under K2.However,the saturated fatty acid(SFA)content showed the opposite trend.No significant differences were found in pyruvate(PYR)content among the K treatments.The protein and oxaloacetic acid(OAA)contents and phosphoenolpyruvate carboxylase(PEPCase)activity of NJ9108 first decreased and then increased with increasing K,and the minimum values were obtained under K2;while IR72 showed the opposite trend and the maximum values were obtained under K1.Overall,increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis.The optimal K application rate for lipid synthesis,eating quality and grain yield was 135 kg ha^(-1)for both cultivars.展开更多
Objective To explore the effect of Daicong solu tion(DCS)on aged rats dementia model.Method The experiment used22-month old rats whose basal nuclei was destroyed by bilateral electrolytic method as model for aged rats...Objective To explore the effect of Daicong solu tion(DCS)on aged rats dementia model.Method The experiment used22-month old rats whose basal nuclei was destroyed by bilateral electrolytic method as model for aged rats dem entia.They were treated with DCS for a month.Then the level of superox ide dismutase(SOD),lipid peroxide(LPO),monoamine oxidase(MAO)and cholinesterase(CHE)in the serum was measured.Result Compared with the control,the activ ity of SOD increased markedly(P <0.01),the content of LOP and activity MAO and CHE were decreased(P <0.01).Conclusion DCS is effective in treating the aged dementia.展开更多
Background: Intravenous application of iron preparations which is a routine treatment of anemia in hemodialysis patients with end-stage renal disease can lead to iron overload in the body. Redox-active iron can cataly...Background: Intravenous application of iron preparations which is a routine treatment of anemia in hemodialysis patients with end-stage renal disease can lead to iron overload in the body. Redox-active iron can catalyze the formation of hydroxyl radicals and initiation of lipid peroxidation, increase oxidative stress and speed up the development of complications in these patients. Objective: In this study, we determined the markers of lipid peroxidation, protein oxidation and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione S-transferase) in serum of patients with end-stage renal disease on hemodialysis, who had received repeated treatment of iron supplementation. Patients and Methods: The study included 29 patients undergoing regular hemodialysis treatment. These patients were divided into three groups according to the serum ferritin levels: group I (serum ferritin between 100 and 300 mg/L);group II (serum ferritin between 301 and 600 mg/L), and group III (serum ferritin above 601 mg/L). Results: The serum of patients with the highest concentration of serum ferritin and iron contained significantly higher level of lipid peroxidation products, total hydroperoxides and malondialdehyde and advanced oxidation protein products and the lowest concentration of sulfhydryl groups, reduced glutathione and total antioxidant capacity. Conclusion: Based on the obtained results, it can be concluded that iron supplementation in hemodialysis patients and consequently body iron overload of exacerbated oxidative stress have already been present in these patients.展开更多
文摘Aim: To examine the effects of melatonin treatment on lipid peroxidation (LPO) and the activities of antioxidant enzymes in the testicular tissue of streptozotocin (STZ)-induced diabetic rats. Methods: Twenty-six male rats were randomly divided into three groups as follows: group Ⅰ, control, non-diabetic rats (n = 9); group Ⅱ, STZ-induced, untreated diabetic rats (n = 8); group Ⅲ, STZ-induced, melatonin-treated (dose of 10 mg/kg·day) diabetic rats (n = 9). Following 8-week melatonin treatment, all rats were anaesthetized and then were killed to remove testes from the scrotum. Results: As compared to group Ⅰ, in rat testicular tissues of grouap Ⅱ, increased levels of malondialdehyde (MDA) (P 〈 0.01) and superoxide dismutase (SOD) (P 〈 0.01) as well as, decreased levels of catalase (CAT) (P 〈 0.01) and glutathione peroxidase (GSH-Px) (P 〉 0.05) were found. In contrast, as compared to group Ⅱ, in rat testicular tissues of group Ⅲ, levels of MDA decreased (but this decrease was not significant, P 〉 0.05) and SOD (P 〈 0.01) as well as CAT (P 〈 0.05) increased. GSH-Px was not influenced by any of the treatment. Melatonin did not significantly affect the elevated glucose concentration of diabetic group. At the end of the study, there was no significant difference between the melatonin-treated group and the untreated group by means of body and testicular weight. Conclusion: Diabetes mellitus increases oxidative stress and melatonin inhibits lipid peroxidation and might regulate the activities of antioxidant enzymes of diabetic rat testes.
基金supported by the Natural Science Foundation of Hubei Province, China (2008CDB079)the National High Technology Research and Development Program of China (863 Program, 2006AA100103)
文摘To better understand the physiological and biochemical mechanisms of waterlogging tolerance, waterlogging effects on lipid peroxidation and the activity of antioxidative enzymes were investigated in leaves and roots of two maize genotypes, HZ32 (waterlogging-tolerant) and K12 (waterlogging-sensitive). Potted maize plants were waterlogged at the second leaf stage under glasshouse conditions. Leaves and roots were harvested 1 d before and 2, 4, 6, 8 and 10 d after the start of waterlogging treatment. Through comparing the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (POD) between waterlogging-tolerant and waterloggingsensitive genotype, we deduced that CAT was the most important H2O2 scavenging enzyme in leaves, while APX seemed to play a key role in roots. POD, APX, GR and CAT activities in conjunction with SOD seem to play an essential protective role in the O2^- and H2O2 scavenging process. Lipid peroxidation was enhanced significantly only in K12 (P 〈 0.001) and there was no difference (P 〉 0.05) in HZ32 up to 6 d after waterlogging stress. These results indicated that oxidative stress may play an important role in waterlogging-stressed maize plants and that the greater protection of HZ32 leaves and roots from waterlogging-induced oxidative damage results, at least in part, through the maintenance of increased antioxidant enzyme activity.
基金supported by the open fund of the State Key Laboratory of Crop Biology, China (200509).
文摘In order to increase vegetable productivity by improving environmental conditions, this article investigates the effects of exogenous silicon on the activities of major antioxidant enzymes and on lipid peroxidation under chilling stress, and it examines whether silicon-induced chilling tolerance is mediated by an increase in antioxidant activity. Cucumis sativus cv. Jinchun 4 was hydroponically cultivated to the two-leaf stage, at which point seedlings were watered with different concentrations of silicon (0, 0.1 and 1 mmol L^-1) and separately exposed to normal (25/18℃) or chilling (15/8℃) temperatures for six days under low light (100μmol m^-2 s^-9. Data were collected from the second leaves on the percentage of withering and the levels of endogenous silicon, malondialdehyde (MDA), hydrogen peroxide (H202), superoxide radical (O2^.-), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GSH-Px, EC 1.11.1.9), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), glutathione reductase (GR, EC 1.6.4.2), reduced glutathione (GSH) and ascorbate (AsA). Compared to normal temperatures, chilling resulted in partially withered leaves and increased MDA content. When 0.1 or 1 mmol L^-1 exogenous silicon was combined with chilling, the withering of the cucumber leaves was reduced relative to the original chilling treatment, while the endogenous silicon content was increased, antioxidants such as SOD, GSH-Px, APX, MDHAR, GR, GSH, and AsA were more active, and the levels of H2O2, O2^.-, and MDA were lower. We propose that exogenous silicon leads to greater deposition of endogenous silicon and thereby increases antioxidant activities and reduces lipid peroxidation induced by chilling.
基金This research work was financially supported by the National Natural Science Foundation of China(30571091,30170540).
文摘On the basis of the phytotron, the effects of high temperature (daily average temperature 25, 30, 35 and 40℃, respectively) on antioxidant enzymes and lipid peroxidation in flag leaves of wheat at 50% relative air moisture during grain fastest filling stage [19-21 days after anthesis (DAA)] were studied. The wheat cultivars tested were Yangmai 9 with weak-gluten and Yangmai 12 with medium-gluten. Compared with 25℃, the higher the temperature was, the higher was the MDA content in flag leaves, while lower were the SOD, POD, and CAT activities. SOD and CAT activities in Yangmai 12 appeared to be more sensitive to high temperature than that in Yangmai 9. But POD activity in Yangmai 12 was less sensitive to high temperature. MDA content in Yangmai 12 was higher than that in Yangmai 9. The 1000-grain weight declined with increase in temperature.
文摘Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.
文摘In mammals, lactation is the most energetically demanding period of a female’s reproductive life. This study was designed to evaluate the effect of fermented Soya bean and Vitamin C supplement on lipid peroxidation and antioxidant enzymes in lactating albino rats. Thirty five (35) adult female rats were used for this study. At parturition, the animals were randomly divided into five groups of five (5) rats each. Except group four (4) that was subdivided into three (3) sub groups of five animals each (n = 5). Treatment was carried out as follows: Group I: (Normal control) was given normal feed and distilled water, orally (1 ml/kg), Group II: metoclopramide (5 mg/kg), Group III: 100 mg/kg of Vitamin C. The three (3) sub groups under group four (4) received 10%, 20% and 40% soya bean, respectively, Group V: was co-administered with 20% soya bean supplement and Vitamin C (100 mg/kg). Treatment was done for the period of ten (10) days at 06:00 h daily. Although there was an increase in serum MDA concentrations in all the treated groups compared to the control, lipid peroxidation was however significantly higher (P < 0.05) in the metoclopramide group relative to the soya bean supplemented groups. This study has shown that supplementation with soya bean induces a mild antioxidant effect by increasing serum level of superoxide dismutase. There was however a significant decrease in serum SOD in the 10% SB group compared to the control. There was a significant difference in serum catalase activity in the group treated with METCL (46.20 ± 1.53), SB 10% (44.00 ± 1.14) and SB 20% (45.20 ± 1.28) compared to the control (52.00 ± 0.71) (P < 0.05). Serum level of glutathione peroxidase GPx showed a significant difference in the group treated with VIT C, SB 10% and SB 20% compared to the control (P < 0.05).
基金supported by Liaoning Nature Science Foundation of China(project number 2015020466)the National Natural Science Foundation of China(project number 81072311)
文摘Rats were exposed to1 or 10 μg/mL bisphenol A (BPA) in water during pregnancy and lactation. Offspring rats were given normal water and a standard diet from weaning to postnatal day (PND) 50. Perinatal exposure to BPA resulted in significantly increased body weight, visceral adipose tissue, abnormal serum lipids, and lower adiponectin (ADP) levels in both female and male offspring rats. Liver adipose triglyceride lipase (Atgl) mRNA levels and ADP protein in visceral adipose tissue were significantly decreased in BPA-exposed offspring rats. In both female or male offspring rats, obesity and dyslipidemia induced by perinatal exposure to BPA were associated with down regulation of Atgl mRNA in liver and ADP protein in visceral adipose tissue.
文摘Changes of and correlation among root tolerance index (RTI), root Aluminum (Al) content, root/shoot ratio (RSR), root malondialdehyde (MDA) content, and Superoxide dismutase (SOD) and peroxidase (POD) isoforms of maize YQ 7-96 were investigated under Al stress and removal of the stress (RS). Consequently, Al stress led to significant decreases in RTI, RSR, SOD and POD activities, but resulted in significant increase in root MD A and, Al accumulation in the tissues;Root SOD and POD activities did not correlate with Al and MDA contents in roots;The activities of SOD and POD were much lower in roots than in leaves. It can be concluded that (1) Al stress can lead to lipid peroxidation;(2) there is a larger POD family composed of different POD isoforms, some of which are of tissue-specific expression and play different roles in detoxification of Al in maize;(3) for POD isoforms, POD 2 is root-specific. POD 6 and POD 7 are all leaf-specific, POD 5 is not only root-specific but also RS-responsive;(4) high sensitivity of maize to Al is in part associated with much lower activities of both SOD and POD in roots;and (5) more importantly, both SOD and POD are therefore hinted to be not key players in prevention against Al-induced lipid peroxidation.
基金supported financially by the Educational Committee of Beijing and Construction Project of Key Lab and Subject of Beijing,China (XK100190552,JD100190537)
文摘The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by increased salt treatments in both cultivars, and at 140 and 210 mM salt treatments, Zhongmu 1 had significantly higher root, shoot, and leaf dry weights per plant than Deft. The malondialdehyde (MDA) accumulation in Deft was considerably greater than in Zhongmu 1, indicating a higher degree of lipid peroxidation at 140 and 210 mM salt treatments. The changes in the activity and active isoforms of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APOX, EC 1.11,1.11), accumulation of free proline, and rate of lipid peroxidation in leaves of two alfalfa cultivars were also investigated. After stress, the activity and active isoforms of antioxidative enzymes were altered and the extent of alteration varied between the cultivar Deft and Zhongmu 1. The proline accumulation in Deft was considerably greater than in Zhongmu 1 at 210 mM salt treatment. This indicated that proline accumulation may be the result, instead of the cause, of salt tolerance.
文摘A systematic study was conducted to determine the effects of water stress on the activities of protective enzymes and lipid peroxidation in maize. The results showed that, under water stress, the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots increased sharply at prophase and metaphase growth stages, such as, male tetrad stage, but then declined towards the physiological maturity. The protective enzyme activities in roots were lower than those in leaves. The content of malondialdehyde (MDA) increased according to the severity of water stress. The content of MDA in roots was lower than that in leaves. The activities of protective enzymes and lipid peroxidation in roots were positively related to that in leaves with most of the correlation coefficients being significant. The content of soluble proteins in roots and leaves decreased with increasing drought stress. The ear characteristics deteriorated and the economic yields of maize decreased significantly under water stress. The main factors that caused reduction of yields were the decrease in the number of ear kernels and 100-kernel weight.
基金the National High Technology Research and Development Program of China (863 Program)(No. 2003AA627040).
文摘The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L^-1 CaCl2, 150 mmol L^-1 NaCl, and/or 5 mmol L^-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaC1 (150 mmol L^-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaC1 treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L^-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaC1 on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca^2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of EGTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. EGTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaC1 stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.
文摘Objective:To investigate the phenolic compounds composition and the inhibitory activity of Mangifera indica(M.indica) and Mucuna urens(M.urens) seeds extracts against some key enzymes(-amylase,-glucosidasc and aldose reductase) implicated in the pathology and complications of type 2 diabetes in vitro.Methods:Reverse phase chromatographic quantification of the major flavonoids and phenolic acids in the seeds extracts was carried out using high performance liquid chromatography coupled with diode array detection.The inhibitory activities of the seeds extracts against-amylase and-glucosidase were estimated using soluble starch and p-nitrophenylglucopyranosidc as their respective substrates.Inhibition of aldose reductase activity by the extracts was assayed using partially purified lens homogenate of normal male rat as source of enzyme;inhibition of Fe^(2+)-induced lipid peroxidation by extracts was tested in rat pancreas homogenate.Results:The chromatography result revealed that extracts of both seeds had appreciable levels of some major flavonoids and phenolic acids of pharmacological importance,including gallic acid,chlorogenic acid,caffeic acid,ellagic acid,catechin,rutin,quercitrin.quercetin and kaempferol.Extracts of both seeds effectively inhibited-amylase,-glucosidase and aldose reductase activities in a dose-dependent manner,having inhibitory preference for these enzymes in the order of aldose reductase>-glucosidase>-amylase.With lower half-maximal inhibitory concentrations(IC50)against-amylase,-glucosidase,and aldose reductase,M.indica had stronger inhibitory potency against these enzymes than M.urens.Extracts of both seeds also inhibited Fe2+-induced lipid peroxidation in a dose-dependent pattern,with M.indica being more potent than M.urens.Conclusions:The results obtained provide support for a possible use of M.indica and M.urens seeds in managing hyperglycemia and preventing the complications associated with it in type 2diabetes.
基金supported by the State Oceanic Administration Specific Public Project of China (201105013)
文摘The objective of this study was to examine the effect ofbenzo[a]pyrene (BaP) on the detoxification and antioxidant systems of two microalgae, Isochrysis zhanjiangensis and Platymonas subcordiformis. In our study, these two algae were exposed to BaP for 4 days at three different concentrations including 0.5 μg L-1 (low), 3 μg L-1 (mid) and 18 μg L-1 (high). The activity of detoxi- fication enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) increased in P subcordiformis in all BaP-treated groups. In 1. zhanjiangensis, the activity of these two enzymes increased at the beginning of exposure, and then de- creased in the groups treated with mid- and high BaP. The activity of antioxidant enzyme superoxide dismutase (SOD) increased in/. zhanjiangensis in all BaP-treated groups, and then decreased in high BaP-treated group, while no significant change was observed in P subcordiformis. The activity of antioxidant enzyme catalase (CAT) increased in I. zhanjiangensis and P subcordiformis in all BaP- treated groups. The content of malondialdehyde (MDA) in Isochrysis zhanjiangensis increased first, and then decreased in high BaP-treated group, while no change occurred in P. subcordiformis. These results demonstrated that BaP significantly influenced the activity of detoxifying and antioxidant enzymes in microalgae. The metabolic related enzymes (EROD, GST and CAT) may serve as sensitive biomarkers of measuring the contamination level of BaP in marine water.
基金supported by grants from the Na-tional Natural Science Foundation of China(No.41476127)the Science and Technology Planning Project of Zhejiang Province(No.2016F50038)+1 种基金the Science and Technology Planning Project of ZhouShan City(No.2015C31010)the Scientific Research Foundation of Zhejiang Ocean Universtiy(No.2014Q1434)
文摘An 8-week feeding trial was conducted to determine the optimal dietary protein-to-lipid ratio for juvenile Nibea albiflora with an initial weight of(11.76 ± 0.20) g.Nine experimental diets containing different concentrations of protein(40%,47%,or 54%) and lipids(5%,9%,or 13%) in a 3 × 3 factorial experimental design were tested in triplicate groups of fish,while the protein-to-energy(P/E) ratios of the diets varied in the range of 19.74–28.32 mg k J^(-1).Results showed that fish fed diets containing 9% or 13% lipids with 54% protein exhibited significantly higher weight gains and specific growth rates than those fed other diets.The feed conversion rate of fish fed the diet with 40% protein and 5% lipids was significantly poorer than that of fish fed other diets.The protein efficiency rate of fish fed diets with 5% lipids was significantly lower than that of fish fed 9% or 13% lipid diets.Carcass lipid and energy contents were positively correlated with dietary lipid level regardless of protein level.Fish fed a 54% protein diet showed the highest trypsin activity.The intestinal lipase activity of fish fed the diet containing 13% lipids was significantly higher than that of fish fed 5% or 9% lipid diets.These results demonstrate the high protein dietary requirements of N.albiflora.A diet containing 54% protein and 9%–13% lipids with a P/E ratio of 26.2–27.81 mg protein k J^(-1) can be considered optimal for juvenile N.albiflora.
文摘The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. cv Zhongyou 821) plants were examined using solution culture experiment. Compared to the 20 mmol B m -3 treatment, boron deficient treatment (2 mmol B m -3 ) decreased root dry weight and increased the rate of solute leakage and malondialdehyde (MDA) concentration in the roots of rape. Similar patterns of change were observed in the level of lipid peroxidation (MDA concentration) and the rate of solute leakage under boron deficiency. Results suggested that a significant alteration of membrane composition had occurred under B deficiency. The concentration of putrescine and the ratio of putrescine to spermidine + spermine in the roots of rape increased significantly, and the activities of superoxide dismutase and catalase decreased in the roots of rape during B deficiency. But peroxidase activity in root of B deficient plant was higher than that of control plant.
基金supported by the Young Scientist Innovation Science of Shandong Agricultural University,China (23653)
文摘The aim of the study is to determine whether grafting could improve antioxidant enzyme activities and polyamine contents in leaves of cucumber plants(Cucumis sativus L.cv.Xintaimici) under copper stress.Grafted(using Cucurbita ficifolia as rootstock) and ungrafted cucumber seedlings were cultured in deep flow technique(DFT) with the Cu2+ concentration of 40 μmol L-1.The results showed that on the 9th day of copper stress treatment,the contents of malondialdehyde(MDA) and hydrogen peroxide(H2O2),superoxide radical() producing rate,and electrolyte leakage percentage were significantly lower in grafted seedlings in comparison to those of the ungrafted seedlings,whereas the activities of antioxidants such as superoxide dismutase(SOD,EC 1.15.1.1),peroxidase(POD,EC 1.11.1.7),ascorbate peroxidase(APX,EC 1.11.1.11),catalase(CAT,EC 1.11.1.6),glutathione reductase(GR,EC 1.6.4.2),and monodehydroascorbate reductase(MDHAR,EC 1.6.5.4) of grafted seedlings were also significantly higher than that of ungrafted seedlings,and the contents of free proline and soluble protein of grafted seedlings were significantly higher than that of ungrafted seedlings.Cu2+ treatment increased the putrescine(Put) level and lowered the spermidine(Spd) and spermine(Spm) levels,thereby reducing the Put/(Spd + Spm) ratio in leaves of grafted and ungrafted seedlings.Grafting markedly reversed these Cu-induced effects for all three PAs and partially restored the Put/(Spd + Spm) ratio in leaves.These results suggest that grafting can enhance the tolerance of cucumber seedlings to Cu2+ stress by increasing the activities of antioxidants and the levels of endogenous Spd and Spm,decreasing the Put/(Spd + Spm) ratio and the levels of ROS,promoting free proline and soluble protein synthesis in cucumber seedling leaves.
文摘Membrane lipid peroxidation and protective enzyme activity in leaves of low-phosphorus-tolerant rice cultivars Dalidao and Liantangzao 3, and low-phosphorus-sensitive cultivars Huzhanqi and Xinsanbaili were studied under low phosphorus stress with sandy culture. Results indicated that low-phosphorus stress aggravated the membrane lipid peroxidation in rice leaves, and it was more severe in low-phosphorus-sensitive cultivars than that in low-phosphorus-tolerant eultivars. During the period of low-phosphorus stress, the activities of SOD, CAT and POD maintained relatively stable in low-phosphorustolerant cultivars, whereas those increased obviously at early stage and subsequently decreased rapidly in the low-phosphorus-sensitive cultivars, suggesting that the absolute activities of protective enzymes had no relation with the low-phosphorus stress, while the changing trend was reverse.
基金supported by the Sichuan Science and Technology Program,China(2020YFH0146 and 2022YFH0029).
文摘Lipid content has an important effect on rice eating quality,but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood.Potassium(K)has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen(N)and phosphorus(P)fertilizers.To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice,we used Nanjing 9108(NJ9108,japonica)and IR72(indica)rice as experimental materials and four K levels:K0(0 kg ha^(-1)),K1(90 kg ha^(-1)),K2(135 kg ha^(-1))and K3(180 kg ha^(-1)).The results showed that the lipid content,free fatty acid(FFA)content,unsaturated fatty acid(UFA)content,malonyl-CoA(MCA)content,phosphatidic acid(PA)content,lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars.The maximum values were obtained under K2.However,the saturated fatty acid(SFA)content showed the opposite trend.No significant differences were found in pyruvate(PYR)content among the K treatments.The protein and oxaloacetic acid(OAA)contents and phosphoenolpyruvate carboxylase(PEPCase)activity of NJ9108 first decreased and then increased with increasing K,and the minimum values were obtained under K2;while IR72 showed the opposite trend and the maximum values were obtained under K1.Overall,increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis.The optimal K application rate for lipid synthesis,eating quality and grain yield was 135 kg ha^(-1)for both cultivars.
文摘Objective To explore the effect of Daicong solu tion(DCS)on aged rats dementia model.Method The experiment used22-month old rats whose basal nuclei was destroyed by bilateral electrolytic method as model for aged rats dem entia.They were treated with DCS for a month.Then the level of superox ide dismutase(SOD),lipid peroxide(LPO),monoamine oxidase(MAO)and cholinesterase(CHE)in the serum was measured.Result Compared with the control,the activ ity of SOD increased markedly(P <0.01),the content of LOP and activity MAO and CHE were decreased(P <0.01).Conclusion DCS is effective in treating the aged dementia.
文摘Background: Intravenous application of iron preparations which is a routine treatment of anemia in hemodialysis patients with end-stage renal disease can lead to iron overload in the body. Redox-active iron can catalyze the formation of hydroxyl radicals and initiation of lipid peroxidation, increase oxidative stress and speed up the development of complications in these patients. Objective: In this study, we determined the markers of lipid peroxidation, protein oxidation and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, glutathione S-transferase) in serum of patients with end-stage renal disease on hemodialysis, who had received repeated treatment of iron supplementation. Patients and Methods: The study included 29 patients undergoing regular hemodialysis treatment. These patients were divided into three groups according to the serum ferritin levels: group I (serum ferritin between 100 and 300 mg/L);group II (serum ferritin between 301 and 600 mg/L), and group III (serum ferritin above 601 mg/L). Results: The serum of patients with the highest concentration of serum ferritin and iron contained significantly higher level of lipid peroxidation products, total hydroperoxides and malondialdehyde and advanced oxidation protein products and the lowest concentration of sulfhydryl groups, reduced glutathione and total antioxidant capacity. Conclusion: Based on the obtained results, it can be concluded that iron supplementation in hemodialysis patients and consequently body iron overload of exacerbated oxidative stress have already been present in these patients.