BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous stud...BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.展开更多
Pancreatic adenocarcinoma(PAAD) is one of the most lethal malignancies. Although gemcitabine(GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C(Sec C) is a natural com...Pancreatic adenocarcinoma(PAAD) is one of the most lethal malignancies. Although gemcitabine(GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C(Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect(80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-L-cysteine(NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum(ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation(ERAD) ubiquitinates anddownregulates YAP to enhance ER stress via destruction complex(YAP-Axin-GSK-βTr CP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.展开更多
基金Natural Science Foundation of Hebei Province,No.21377772DNo.H2022406034National Natural Scientific Foundation of China,No.81672700.
文摘BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
基金supported by the National Key Research and Development Program of China(2016YFA0201504)National Natural Science Foundation of China(No.81473249 and81102464)+2 种基金the National Mega-project for Innovative Drugs(2014ZX09201042,China)the CAMS Innovation Fund for Medical Sciences(CIFMS,2016-I2M-2-002,China)Drug Innovation Major Project of China(2018ZX09711001-007-002)。
文摘Pancreatic adenocarcinoma(PAAD) is one of the most lethal malignancies. Although gemcitabine(GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C(Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect(80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-L-cysteine(NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum(ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation(ERAD) ubiquitinates anddownregulates YAP to enhance ER stress via destruction complex(YAP-Axin-GSK-βTr CP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.