期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Liver Nuclear Activation of Carbon Tetrachloride or Bromotrichloromethane to Trichloromethyl and Trichloromethylperoxyl Free Radicals.Their Reactions With Lipids and Proteins 被引量:4
1
作者 S. L. FANELLI G. D. CASTRO M. E. GALELLI AND J. A. CASTRO (Centro de Investigaciones Toxicologicas(CEITOX)-CITEFA/CONICET, Zufriategui 4380, 1603 Villa Martelli,Buenos Aires, Argentina)(Send correspondence to Dr. Jose Alberto Castro, Zufriategui 4380, 1 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1998年第2期101-114,共14页
The formation of·CCl3 radicals in liver nuclei was suggested by spin trapping of them with N-t-butyl-α-phenylnitrone followed by GC/MS detection of the resulting adduct. Comparison of its formation in microsomal... The formation of·CCl3 radicals in liver nuclei was suggested by spin trapping of them with N-t-butyl-α-phenylnitrone followed by GC/MS detection of the resulting adduct. Comparison of its formation in microsomal biotransformation of CCl4 was made. In aerobic nuclear activation mixtures containing NADPH and CCl4, significant decrease in the arachidonic acid content of nuclear lipids was observed (27. 8%, compared to control), the intensity of this decrease was lower than that occurring in the corresponding microsomal incubation mixtures (29.1%). Significant decreases in arachidonic acid content of nuclear and endoplasmic reticulum lipids were also observed in animals at 6 hours of poisoning with the haloalkane. During aerobic nuclear metabolism of CCl4 or CBrCl3, cholesterol oxidation products were detected: a ketocholesterol, an epoxide like structure and 7-ketocholesterol. Nuclear protein carbonyl formation was not promoted during nuclear CCl4 biotransformation. NADPH by itself may lead to protein carbonyl formation during prolonged periods of incubation. CBrCl3 in contrast, led to decreased protein carbonyl formation. No increase in nuclear protein carbonyl formation was observed in CCl4 intoxicated animals during periods of time between 1 to 6 hours after treatment. The results indicate that during nuclear biotransformation of CCl4 or CBrCl3 reactive free radicals, PUFA degradation, reactive aldehydes and cholesterol oxidation products are formed, nearby DNA and regulatory proteins. 展开更多
关键词 NADPH Liver Nuclear Activation of Carbon Tetrachloride or Bromotrichloromethane to Trichloromethyl and Trichloromethylperoxyl free radicals.Their Reactions With lipids and Proteins free
下载PDF
Estrogen inhibits lipid peroxidation after hypoxic-ischemic brain damage in neonatal rats 被引量:2
2
作者 Hui Zhu Xiao Han +2 位作者 Dafeng Ji Guangming Lv Meiyu Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第31期2424-2431,共8页
Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brai... Sprague-Dawley neonatal rats within 7 days after birth were used in this study. The left common carotid artery was occluded and rats were housed in an 8% O2 environment for 2 hours to establish a hypoxic-ischemic brain damage model. 17β-estradiol (1 × 10-5 M) was injected into the rat abdominal cavity after the model was successfully established. The left hemisphere was obtained at 12, 24, 48, 72 hours after operation. Results showed that malondialdehyde content in the left brain of neonatal rats gradually increased as modeling time prolonged, while malondialdehyde content of 17β-estrodial-treated rats significantly declined by 24 hours, reached lowest levels at 48 hours, and then peaked at 72 hours after injury. Nicotinamide-adenine dinucleotide phosphate histochemical staining showed the nitric oxide synthase-positive cells and fibers dyed blue/violet and were mainly distributed in the cortex, hippocampus and medial septal nuclei. The number of nitric oxide synthase-positive cells peaked at 48 hours and significantly decreased after 17β-estrodial treatment. Our experimental findings indicate that estrogen plays a protective role following hypoxic-ischemic brain damage by alleviating lipid peroxidation through reducing the expression of nitric oxide synthase and the content of malondialdehyde. 展开更多
关键词 hypoxic-ischemic encephalopathy hypoxic-ischemic brain damage estrogen malondialdehyde free radical nitric oxide synthase lipid peroxidation neonatal rats neuroprotection neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部