Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefactionrelated hazards(e.g.building damages caused by liquefaction-induced differential settlement).However,in engineer...Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefactionrelated hazards(e.g.building damages caused by liquefaction-induced differential settlement).However,in engineering practice,soil liquefaction potential is usually measured at limited locations in a specific site using in situ tests,e.g.cone penetration tests(CPTs),due to the restrictions of time,cost and access to subsurface space.In these cases,liquefaction potential of soil at untested locations requires to be interpreted from limited measured data points using proper interpolation method,leading to remarkable statistical uncertainty in liquefaction assessment.This underlines an important question of how to optimize the locations of CPT soundings and determine the minimum number of CPTs for achieving a target reliability level of liquefaction assessment.To tackle this issue,this study proposes a smart sampling strategy for determining the minimum number of CPTs and their optimal locations in a selfadaptive and data-driven manner.The proposed sampling strategy leverages on information entropy and Bayesian compressive sampling(BCS).Both simulated and real CPT data are used to demonstrate the proposed method.Illustrative examples indicate that the proposed method can adaptively and sequentially select the required number and optimal locations of CPTs.展开更多
According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (σd/2)1/2(kPa)1/2. When appl...According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (σd/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (emin). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests.展开更多
Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake di...Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake disasters. Therefore, the discrimination and prediction of earthquake-induced soil liquefaction has been a hot issue in geohazard research. The soil liquefaction assessment is an integral part of engineering practice. This paper evaluated a dataset of 435 seismic sand liquefaction events using machine learning algorithms. The dataset was analyzed using seven potential assessment parameters. Ten machine learning algorithms are evaluated for their ability to assess seismic sand liquefaction potential, including Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Naive Bayes(NB), KNearest Neighbor(KNN), Artificial Neural Network(ANN), Classification Tree(CT), Support Vector Machine(SVM), Random Forest(RF), e Xtreme Gradient Boosting(XGBoost), Light Gradient Boosting Machine(Light GBM). A 10-fold cross-validation(CV) method was used in the modeling process to verify the predictive performance of the machine learning models. The final percentages of significant parameters that influenced the prediction results were obtained as Cyclic Stress Ratio(CSR) and Shear-Wave Velocity( VS1) with 56% and 38%, respectively. The final machine learning algorithms identified as suitable for seismic sand liquefaction assessment were the CT, RF, XGBoost algorithms, with the RF algorithm performing best.展开更多
Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all ...Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region.展开更多
Two different types of potential oscillations have been identified for the first time during dichromate reduction on a gold electrode in a solution of dilute sulfuric acid. One occurs before hydrogen evolution due to ...Two different types of potential oscillations have been identified for the first time during dichromate reduction on a gold electrode in a solution of dilute sulfuric acid. One occurs before hydrogen evolution due to the formation and dissolution of passivating films of low-valence chromium oxides, and the other generates, accompanying periodic hydrogen evolution, from the coupling of electrochemical reactions with diffusive and convective mass transport. More interestingly, these two types of oscillations correspond to two crossing loops in the cyclic voltammogram (CV). Such a relation of oscillations with crossed CVs will provide a new way to find electrochemical oscillatory systems systematically and rapidly.展开更多
Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptio...Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptions were employed during the derivation: 1) principal strains by M-C model and D-P model are equal, and 2) the material is under plane strain condition. Based on the analysis of the surface on rt plane, it is found that the proposed D-P type criterion is better than the D-P criterion with M-C circumscribed circle or M-C inscribed circle, and is applicable for stress Lode angle less than zero. By comparing the predicted results with the test data of sand under plane strain condition and other D-P criteria, the proposed criterion is verified and agrees well with the test data, which is further proved to be better than other D--P type criteria in certain range of Lode angle. The criterion was compiled into a finite difference package FLAC3D by user-subroutine, and was used to analyze the stability of a slope by strength reduction method. The predicted slope safety factor from the proposed criterion agrees well with that by Spencer method, and it is more accurate than that from classic D-P criteria.展开更多
This paper discusses a class of nonlinear SchrSdinger equations with combined power-type nonlinearities and harmonic potential. By constructing a variational problem the potential well method is applied. The structure...This paper discusses a class of nonlinear SchrSdinger equations with combined power-type nonlinearities and harmonic potential. By constructing a variational problem the potential well method is applied. The structure of the potential well and the properties of the depth function are given. The invariance of some sets for the problem is shown. It is proven that, if the initial data are in the potential well or out of it, the solutions will lie in the potential well or lie out of it, respectively. By the convexity method, the sharp condition of the global well-posedness is given.展开更多
This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to ...This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.展开更多
The liquefaction is a very significant phenomenon in clayey silty soils, silty sands and also sands. The high potential of liquefaction is generally recognized when these types of soils are laid under the hydrostatic ...The liquefaction is a very significant phenomenon in clayey silty soils, silty sands and also sands. The high potential of liquefaction is generally recognized when these types of soils are laid under the hydrostatic water table. Low plasticity silts, silty sands and sands are found as recent alluvial deposits in the western coastal part of Albania, especially in the sandy beaches of Adriatic Sea near Durres City. The aim of this study is to evaluate the soil liquefaction potential in the area of Golem. Ten CPTUs (cone penetration test with pore pressure measurements) are carried out for the site investigation of soils. In this paper, results of the CPTU based liquefaction analysis are presented. The data of two CPTUs (10 in total) are analyzed and factor of safety was found by considering different levels of hazard and ground water. The results of liquefaction potential analysis show that the soils in the area of Golem have a high risk of liquefaction.展开更多
Soil liquefaction, and the permanent deformations that frequently result from it, have caused significant damage in past earthquakes. The procedures used in contemporary geotechnical earthquake engineering practice ar...Soil liquefaction, and the permanent deformations that frequently result from it, have caused significant damage in past earthquakes. The procedures used in contemporary geotechnical earthquake engineering practice are generally based on simplified procedures for the evaluation of the liquefaction potential. The work describes a framework for performance-based earthquake engineering and its use in the development of a performance-based procedure for liquefaction hazard evaluation. The performance-based procedure will be used to show how consistent application of conventional procedures for evaluation of liquefaction potential can influence performance prediction. Implications for liquefaction-resistant design will also be discussed. The purpose is to summarize current procedures for practical prediction of liquefaction behavior, to describe recent advances in the understanding of liquefaction behavior, and to describe the incorporation of this improved understanding into new solutions for detailed modeling of soil liquefaction, Simplified procedures for evaluation of liquefaction hazards will be reviewed relatively briefly, with more details devoted to emerging knowledge about the mechanics of liquefiable soil behavior, and methods for incorporating those mechanics into improved models for performance prediction. In particular it focuses about the influence on the evaluation of Cyclic Resistance Ratio (CRR) by different in-situ tests (Cone Penetration Test (CPT). Standard Penetration Test (SPT) and Seismic Dilatometer Marchetti Test (SDMT)) and by different shear waves velocity measurements (Down Hole D-H. Cross Hole C-H, Seismic Dilatometer Marchetti Test SDMT).展开更多
Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismical...Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.展开更多
永磁同步发电机(permanent magnetic synchronous generator,PMSG)作为海上风力发电的主要设备,是风电技术的重要发展方向。然而,PMSG在运行过程中,受到大扰动干扰会导致其暂态稳定性下降。因此,针对PMSG风机大扰动下的暂态稳定性阈值...永磁同步发电机(permanent magnetic synchronous generator,PMSG)作为海上风力发电的主要设备,是风电技术的重要发展方向。然而,PMSG在运行过程中,受到大扰动干扰会导致其暂态稳定性下降。因此,针对PMSG风机大扰动下的暂态稳定性阈值难以判定的问题,本文基于混合势函数理论,建立了PMSG风机系统简化后的混合势函数模型,并推导出PMSG风机在大扰动后的暂态稳定判据。通过仿真后的网侧电流波形和网侧功率波形验证了暂态稳定判据的准确性,并调整各参数数值以分析PMSG风机暂态稳定性与风机参数、故障深度、故障时间和风速的关联性。展开更多
基金supported by grants from the Research Grant Council of Hong Kong Special Administrative Region,China(Project Nos.CityU 11202121 and CityU 11213119).
文摘Characterizing spatial distribution of soil liquefaction potential is critical for assessing liquefactionrelated hazards(e.g.building damages caused by liquefaction-induced differential settlement).However,in engineering practice,soil liquefaction potential is usually measured at limited locations in a specific site using in situ tests,e.g.cone penetration tests(CPTs),due to the restrictions of time,cost and access to subsurface space.In these cases,liquefaction potential of soil at untested locations requires to be interpreted from limited measured data points using proper interpolation method,leading to remarkable statistical uncertainty in liquefaction assessment.This underlines an important question of how to optimize the locations of CPT soundings and determine the minimum number of CPTs for achieving a target reliability level of liquefaction assessment.To tackle this issue,this study proposes a smart sampling strategy for determining the minimum number of CPTs and their optimal locations in a selfadaptive and data-driven manner.The proposed sampling strategy leverages on information entropy and Bayesian compressive sampling(BCS).Both simulated and real CPT data are used to demonstrate the proposed method.Illustrative examples indicate that the proposed method can adaptively and sequentially select the required number and optimal locations of CPTs.
基金State Natural Science Foundation(59678020) Natural Science Foundation of Zhejiang Province(RC9609).
文摘According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (σd/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (emin). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests.
基金financial support from the Doctoral Innovative Talent Cultivation Fund at China University of Mining and Technology (Beijing)(No. BBJ2023049)。
文摘Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake disasters. Therefore, the discrimination and prediction of earthquake-induced soil liquefaction has been a hot issue in geohazard research. The soil liquefaction assessment is an integral part of engineering practice. This paper evaluated a dataset of 435 seismic sand liquefaction events using machine learning algorithms. The dataset was analyzed using seven potential assessment parameters. Ten machine learning algorithms are evaluated for their ability to assess seismic sand liquefaction potential, including Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Naive Bayes(NB), KNearest Neighbor(KNN), Artificial Neural Network(ANN), Classification Tree(CT), Support Vector Machine(SVM), Random Forest(RF), e Xtreme Gradient Boosting(XGBoost), Light Gradient Boosting Machine(Light GBM). A 10-fold cross-validation(CV) method was used in the modeling process to verify the predictive performance of the machine learning models. The final percentages of significant parameters that influenced the prediction results were obtained as Cyclic Stress Ratio(CSR) and Shear-Wave Velocity( VS1) with 56% and 38%, respectively. The final machine learning algorithms identified as suitable for seismic sand liquefaction assessment were the CT, RF, XGBoost algorithms, with the RF algorithm performing best.
文摘Estimation of strain-dependent dynamic soil properties, e.g. the shear modulus and damping ratio, along with the liquefaction potential parameters, is extremely important for the assessment and analysis of almost all geotechnical problems involving dynamic loading. This paper presents the dynamic properties and liquefaction behaviour of cohesive soil subjected to staged cyclic loading, which may be caused by main shocks of earthquakes preceded or followed by minor foreshocks or aftershocks, respectively. Cyclic triaxial tests were conducted on the specimens prepared at different dry densities (1.5 g/cm3 and 1.75 g/cm3) and different water contents ranging from 8% to 25%. The results indicated that the shear modulus reduction (G/Gmax) and damping ratio of the specimen remain unaffected due to the changes in the initial dry density and water content. Damping ratio is significantly affected by confining pressure, whereas G/Gmax is affected marginally. It was seen that the liquefaction criterion of cohesive soils based on single-amplitude shear strain (3.75% or the strain at which excess pore water pressure ratio becomes equal to 1, whichever is lower) depends on the initial state of soils and applied stresses. The dynamic model of the regional soil, obtained as an outcome of the cyclic triaxial tests, can be successfully used for ground response analysis of the region.
文摘Two different types of potential oscillations have been identified for the first time during dichromate reduction on a gold electrode in a solution of dilute sulfuric acid. One occurs before hydrogen evolution due to the formation and dissolution of passivating films of low-valence chromium oxides, and the other generates, accompanying periodic hydrogen evolution, from the coupling of electrochemical reactions with diffusive and convective mass transport. More interestingly, these two types of oscillations correspond to two crossing loops in the cyclic voltammogram (CV). Such a relation of oscillations with crossed CVs will provide a new way to find electrochemical oscillatory systems systematically and rapidly.
基金Project(2010B14814) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200801133) supported by the Ministry of Water Resources of China for Public Welfare ProfessionProject(50809023) supported by the National Natural Science Foundation of China
文摘Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptions were employed during the derivation: 1) principal strains by M-C model and D-P model are equal, and 2) the material is under plane strain condition. Based on the analysis of the surface on rt plane, it is found that the proposed D-P type criterion is better than the D-P criterion with M-C circumscribed circle or M-C inscribed circle, and is applicable for stress Lode angle less than zero. By comparing the predicted results with the test data of sand under plane strain condition and other D-P criteria, the proposed criterion is verified and agrees well with the test data, which is further proved to be better than other D--P type criteria in certain range of Lode angle. The criterion was compiled into a finite difference package FLAC3D by user-subroutine, and was used to analyze the stability of a slope by strength reduction method. The predicted slope safety factor from the proposed criterion agrees well with that by Spencer method, and it is more accurate than that from classic D-P criteria.
基金Project supported by the National Natural Science Foundation of China (Nos. 10871055 and 10926149)the Natural Science Foundation of Heilongjiang Province (Nos. A200702 and A200810)+1 种基金the Science and Technology Foundation of Education Offce of Heilongjiang Province (No. 11541276)the Foundational Science Foundation of Harbin Engineering University
文摘This paper discusses a class of nonlinear SchrSdinger equations with combined power-type nonlinearities and harmonic potential. By constructing a variational problem the potential well method is applied. The structure of the potential well and the properties of the depth function are given. The invariance of some sets for the problem is shown. It is proven that, if the initial data are in the potential well or out of it, the solutions will lie in the potential well or lie out of it, respectively. By the convexity method, the sharp condition of the global well-posedness is given.
基金Project(5141001028)supported by International Cooperation and Exchanges of NSFC,ChinaProjects(51308566,51308565,51409025)supported by the National Natural Science Foundation of ChinaProject(CDJZR12200002)supported by the Fundamental Research Funds for the Central Universities,China
文摘This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.
文摘The liquefaction is a very significant phenomenon in clayey silty soils, silty sands and also sands. The high potential of liquefaction is generally recognized when these types of soils are laid under the hydrostatic water table. Low plasticity silts, silty sands and sands are found as recent alluvial deposits in the western coastal part of Albania, especially in the sandy beaches of Adriatic Sea near Durres City. The aim of this study is to evaluate the soil liquefaction potential in the area of Golem. Ten CPTUs (cone penetration test with pore pressure measurements) are carried out for the site investigation of soils. In this paper, results of the CPTU based liquefaction analysis are presented. The data of two CPTUs (10 in total) are analyzed and factor of safety was found by considering different levels of hazard and ground water. The results of liquefaction potential analysis show that the soils in the area of Golem have a high risk of liquefaction.
文摘Soil liquefaction, and the permanent deformations that frequently result from it, have caused significant damage in past earthquakes. The procedures used in contemporary geotechnical earthquake engineering practice are generally based on simplified procedures for the evaluation of the liquefaction potential. The work describes a framework for performance-based earthquake engineering and its use in the development of a performance-based procedure for liquefaction hazard evaluation. The performance-based procedure will be used to show how consistent application of conventional procedures for evaluation of liquefaction potential can influence performance prediction. Implications for liquefaction-resistant design will also be discussed. The purpose is to summarize current procedures for practical prediction of liquefaction behavior, to describe recent advances in the understanding of liquefaction behavior, and to describe the incorporation of this improved understanding into new solutions for detailed modeling of soil liquefaction, Simplified procedures for evaluation of liquefaction hazards will be reviewed relatively briefly, with more details devoted to emerging knowledge about the mechanics of liquefiable soil behavior, and methods for incorporating those mechanics into improved models for performance prediction. In particular it focuses about the influence on the evaluation of Cyclic Resistance Ratio (CRR) by different in-situ tests (Cone Penetration Test (CPT). Standard Penetration Test (SPT) and Seismic Dilatometer Marchetti Test (SDMT)) and by different shear waves velocity measurements (Down Hole D-H. Cross Hole C-H, Seismic Dilatometer Marchetti Test SDMT).
文摘Liquefaction is one of the major catastrophic geohazards which usually occurs in saturated or partially saturated sandy or silty soils during a seismic event. Evaluating the potential liquefaction risks of a seismically prone area can significantly reduce the loss of lives and damage to civil infrastructures. This research is mainly focused on the earthquake-induced liquefaction risk assessment based on Liquefaction Potential Index (LPI) values at different earthquake magnitudes (M = 5.0, 7.0 and 8.0) with a peak ground acceleration (a<sub>max</sub>) of 0.28 g in the Rohingya Refugee camp and surrounding areas of Ukhiya, Cox’s Bazar, Bangladesh. Standard Penetration Test (SPT) results have been evaluated for potential liquefaction assessment. The soils are mainly composed of very loose to loose sands with some silts and clays. Geotechnical properties of these very loose sandy soils are very much consistent with the criteria of liquefiable soil. It is established from the grain size analysis results;the soil of the study area is mainly sand dominated (SP) with some silty clay (SC) which consists of 93.68% to 99.48% sand, 0.06% to 4.71% gravel and 0% to 6.26% silt and clay. Some Clayey Sand (SC) is also present. The silty clay can be characterized as medium (CI) to high plasticity (CH) inorganic clay soil. LPI values have been calculated to identify risk zones and to prepare risk maps of the investigated area. Based on these obtained LPI values, four (4) susceptible liquefaction risk zones are identified as low, medium, high and very high. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of seismic hazards in the investigated area.
文摘永磁同步发电机(permanent magnetic synchronous generator,PMSG)作为海上风力发电的主要设备,是风电技术的重要发展方向。然而,PMSG在运行过程中,受到大扰动干扰会导致其暂态稳定性下降。因此,针对PMSG风机大扰动下的暂态稳定性阈值难以判定的问题,本文基于混合势函数理论,建立了PMSG风机系统简化后的混合势函数模型,并推导出PMSG风机在大扰动后的暂态稳定判据。通过仿真后的网侧电流波形和网侧功率波形验证了暂态稳定判据的准确性,并调整各参数数值以分析PMSG风机暂态稳定性与风机参数、故障深度、故障时间和风速的关联性。