期刊文献+
共找到6,384篇文章
< 1 2 250 >
每页显示 20 50 100
Compatibility Evaluation between Direct Coal Liquefaction Residue and Bitumen 被引量:2
1
作者 Ji Jie Wu Hao +5 位作者 Xu Ying Suo Zhi Wei Jianming Dai Qingli Zhang Ran Diab Aboelkasim 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第1期90-100,共11页
The compatibility between direct coal liquefaction residue(DCLR) and five kinds of pure bitumen(Shell-90,SK-90, ZSY-70, DM-70 and KLMY-50) was evaluated in this study. The rheological characteristics, glass transition... The compatibility between direct coal liquefaction residue(DCLR) and five kinds of pure bitumen(Shell-90,SK-90, ZSY-70, DM-70 and KLMY-50) was evaluated in this study. The rheological characteristics, glass transition temperatures(T_g), solubility parameters(SP) and SARA(saturates, aromatics, resins, and asphaltenes) fractions of DCLR,five kinds of pure bitumen and their blends(named as DCLR modified bitumen) were measured using the dynamic shear rheometer(DSR), differential scanning calorimetry(DSC), viscosity, and SARA tests, respectively. And the compatibility between DCLR and pure bitumen was characterized with three approaches, viz. the Cole-Cole plot,T_g, and the solubility parameter difference(SPD) method. Since each method has its own working mechanism, the compatibility ranking for the DCLR and five kinds of pure bitumen is slightly different according to the three approaches. However, the difference is pretty close and sometimes can be ignored. The general compatibility ranking decreases in the following order: Shell-90≈SK-90>DM-70≈ZSY-70>KLMY-50, which is affected by the asphaltenes content and the colloid index(I_c) value in the pure bitumen. Pure bitumen with lower asphaltenes content and colloid index(I_c) value has better compatibility with DCLR. 展开更多
关键词 direct coal liquefaction RESIDUE (DCLR) pure BITUMEN compatibility Cole-Cole PLOT glass state temperature (Tg) approach SOLUBILITY parameter difference (SPD) method
下载PDF
Effect of Wave Nonlinearity on the Instantaneous Seabed Liquefaction
2
作者 WANG Zhao-jun SUI Ti-ti +1 位作者 ZHANG Chi PAN Jun-ning 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期93-103,共11页
The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlin... The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading. 展开更多
关键词 nonlinear wave seabed response seabed liquefaction numerical simulation liquefaction prediction
下载PDF
Mechanisms to explain soil liquefaction triggering,development,and persistence during an earthquake
3
作者 Fernando Teixeira 《Earthquake Science》 2024年第6期558-573,共16页
Mechanisms have been proposed to explain the triggering,development,and persistence of soil liquefaction.The mechanism explaining the horizontal failure plane(triggering)and its depth below the phreatic surface is gov... Mechanisms have been proposed to explain the triggering,development,and persistence of soil liquefaction.The mechanism explaining the horizontal failure plane(triggering)and its depth below the phreatic surface is governed by the flux properties and effective stress at that plane.At the failure plane,the pore water pressure was higher than the effective stress,and the volume change was the highest.The pore water pressure is a function of the soil profile features(particularly the phreatic zone width)and bedrock motion(horizontal acceleration).The volume change at the failure plane is a function of the intrinsic permeability of the soil and bedrock displacement.The failure plane was predicted to occur during the oscillation with the highest amplitude,disregarding further bedrock motion,which was consistent with low seismic energy densities.Two mechanisms were proposed to explain the persistence of soil liquefaction.The first is the existence of low-permeability layers in the depth range in which the failure planes are predicted to occur.The other allows for the persistence and development of soil liquefaction;it is consistent with homogeneous soils and requires water inflow from bedrock water springs.The latter explains many of the features of soil liquefaction observed during earthquakes,namely,surficial effects,“instant”liquefaction,and the occurrence of short-and long-term changes in the level of the phreatic surfaces.This model(hypothesis),the relationship between the flux characteristics and loss of soil shear strength,provides self-consistent constraints on the depth below the phreatic surfaces where the failure planes are observed(expected to occur).It requires further experimental and observational evidence.Similar reasoning can be used to explain other saturated soil phenomena. 展开更多
关键词 soil liquefaction triggering soil liquefaction persistence intrinsic soil permeability impervious soil layers bedrock water springs
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
4
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction liquefaction solvents Process simulation Hydrogen solubility
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
5
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Liquefaction and post-liquefaction behaviors of sands affected by immersion-induced degradation of crushed mudstone
6
作者 Tadao Enomoto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1799-1812,共14页
A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b... A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior. 展开更多
关键词 liquefaction Post-liquefaction behavior Triaxial test Sands containing crushed mudstone
下载PDF
Effect of particle composition and consolidation degree on the wave-induced liquefaction of soil beds
7
作者 Zhiyuan Chen Yupeng Ren +1 位作者 Guohui Xu Meng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期11-22,共12页
The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefact... The wave-induced liquefaction of seabed is responsible for causing damage to marine structures.Particle composition and consolidation degree are the key factors affecting the pore water pressure response and liquefaction behavior of the seabed under wave action.The present study conducted wave flume experiments on silt and silty fine sand beds with varying particle compositions.Furthermore,a comprehensive analysis of the differences and underlying reasons for liquefaction behavior in two different types of soil was conducted from both macroscopic and microscopic perspectives.The experimental results indicate that the silt bed necessitates a lower wave load intensity to attain the liquefaction state in comparison to the silty fine sand bed.Additionally,the duration and development depth of liquefaction are greater in the silt bed.The dissimilarity in liquefaction behavior between the two types of soil can be attributed to the variation in their permeability and plastic deformation capacity.The permeability coefficient and compression modulus of silt are lower than those of silty fine sand.Consequently,silt is more prone to the accumulation of pore pressure and subsequent liquefaction under external loading.Prior research has demonstrated that silt beds with varying consolidation degrees exhibit distinct initial failure modes.Specifically,a dense bed undergoes shear failure,whereas a loose bed experiences initial liquefaction failure.This study utilized discrete element simulation to examine the microscopic mechanisms that underlie this phenomenon. 展开更多
关键词 wave flume liquefaction pore water pressure consolidation permeability experiment discrete element simulation
下载PDF
Assessment of seismic ground motion amplification and liquefaction at a volcanic area characterized by residual soils 被引量:1
8
作者 Luca MATASSONI Andrea FIASCHI 《Journal of Mountain Science》 SCIE CSCD 2020年第3期740-752,共13页
A seismic hazard was assessed related to site effects at Abbadia San Salvatore, central Italy, on the Mt. Amiata slopes, an ancient volcanic area characterized by residual soils(thick layers of loose to dense sands or... A seismic hazard was assessed related to site effects at Abbadia San Salvatore, central Italy, on the Mt. Amiata slopes, an ancient volcanic area characterized by residual soils(thick layers of loose to dense sands originated from weathering of the trachydacitic lavas). The seismic ground amplification and soil liquefaction related to these layers were recognized as the major seismic hazards for the area.Geological, geophysical, and geotechnical surveys were carried out on the volcanic rocks. The Horizontal-to-Vertical Spectral Ratio(HVSR) analysis of 252 noise measurements and 29 shear-wave velocity models of the subsoil allowed a seismic microzonation of the studied area, distinguished by thick weathered volcanic sands and shear-wave impedance contrast with respect to the seismic bedrock(volcanic bedrock). The differentiation of classified zones allowed recognition of areas characterized by residual(almost undisturbed) soils from those with soils probably affected by flowing water. The analysis of hazards revealed that peak acceleration by seismic amplification of ground motion exceeded the value set by the national rules(0.175 g) in a restricted area of the zone characterized by the most perturbed soils(Zone D);the potential occurrence of soil liquefaction was also greater in this zone. Finally, the study showed potential high hazards due to site effects of the volcanic mountainous area characterized by residual soils as opposed to an alluvial plain formed by volcanic debris where these effects have generally been more recognized. 展开更多
关键词 Site effects RESIDUAL SOILS VOLCANIC MOUNTAIN area Seismic ground AMPLIFICATION Soil liquefaction Shear wave velocity
下载PDF
Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process 被引量:1
9
作者 Chong-Zheng Sun Yu-Xing Li +2 位作者 Hui Han Xiao-Yi Geng Xiao Lu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1369-1384,共16页
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ... Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow. 展开更多
关键词 Hydrogen liquefaction Spiral wound heat exchanger Flow pattern transition Falling film flow
下载PDF
The Analysis of the Correlation between SPT and CPT Based on CNN-GA and Liquefaction Discrimination Research
10
作者 Ruihan Bai Feng Shen +2 位作者 Zihao Zhao Zhiping Zhang Qisi Yu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1159-1182,共24页
The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f... The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance. 展开更多
关键词 CNN liquefaction discrimination SPT CPT
下载PDF
Storm Liquefaction Deposits:A Possibility of Time Reversal in Sedimentary Strata of an Estuarial Coastal Area
11
作者 XU Guohui REN Yupeng +3 位作者 HU Guanghai LIU Zhiqin SUN Yongfu LIN Lin 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期961-969,共9页
In the sedimentary strata dating of estuarial coastal areas,it is often found that there is phenomenon of time-reversal in strata.The seabed sediments could be liquefied under storm waves.A laboratory wave flume exper... In the sedimentary strata dating of estuarial coastal areas,it is often found that there is phenomenon of time-reversal in strata.The seabed sediments could be liquefied under storm waves.A laboratory wave flume experiment demonstrated that storm-induced liquefaction deposits are formed by the oscillations of liquefied sediments.In this paper,the particle size distribution and ^(210)Pb_(ex) specific activity of the sediment samples from the liquefaction disturbed zone and adjacent stable zone of the Yellow River Delta were tested.The stratigraphic divisions based on storm liquefaction deposit sequence can effectively explain the vertical changes in particle size and ^(210)Pb_(ex) specific activity.Due to the differentiation of particles during the storm induced liquefaction,coarse and fine particles regrouped,which could explain the phenomenon of time-reversal in dating data. 展开更多
关键词 ^(210)Pb_(ex)specific activity liquefaction deposition REVERSAL sediment
下载PDF
Timing and Spouting Height of Sand Boils Caused by Liquefaction during the 2010 Mw 6.9 Yushu Earthquake, Tibetan Plateau, China
12
作者 Bing Yan Aiming Lin 《Open Journal of Earthquake Research》 2015年第1期14-22,共9页
The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of th... The 2010 Mw 6.9 Yushu earthquake produced a ~33-km-long co-seismic surface rupture zone along the pre-existing active Yushu Fault on China’s central Tibetan Plateau. Sand boils occurred along the tension cracks of the co-seismic surface rupture zone, and locally spouted up above the ground to coat the top of limestone blocks that had slid down from an adjacent ~300-m-high mountain slope. Based on our observations, the relations between the arrival times of P- and S-waves at the sand-boil location and the seismic rupture velocity, we conclude that 1) the sand boils occurred at least 18.24 s after the main shock;2) it took at least 4.09 - 9.79 s after the formation of co-seismic surface rupture to generate liquefaction at the sand-boil location;3) the spouting height of sand boils was at least 65 cm. Our findings help to clarify the relationships between the timing of lique-faction and the spouting height of sand boils during a large-magnitude earthquake. 展开更多
关键词 liquefaction SAND Boil 2010 MW 6.9 YUSHU Earthquake Co-Seismic Surface Rupture Tibetan Plateau
下载PDF
The Effect of Preloading on the Cyclic Liquefaction Strength Measured in the Laboratory
13
作者 Konstantinos Stamatopoulos 《Journal of Civil Engineering and Architecture》 2024年第6期269-275,共7页
The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying p... The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying prestress ratios, densities and verticalstresses. Test results showed a marked increase of the cyclic soil strength with the prestress ratio. The effect is more pronounced for the looser specimens. An empirical expression predicting this effect is proposed. This expression is validated from results of a field test. 展开更多
关键词 Cyclic liquefaction shear stress field test
下载PDF
Kinetics and Process Studies of the Potential for Transformation of Biogas to Biomethane and Liquefaction using Cryogenic Liquid for Domestic Applications
14
作者 Benard Ogembo Paul Njogu Francis Ochieng 《Energy and Power Engineering》 2023年第6期229-240,共12页
The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments ... The present work dealt with the generation, purifying and liquefaction of biomethane to improve energy density using local materials for domestic applications. Cow dung was sourced at JKUAT dairy farm and experiments were conducted at JKUAT Bioenergy laboratory using biogas generated in laboratory scale 1 m<sup>3</sup> bioreactors. Experiments were done in triplicates and repeated under different conditions to get the optimal conditions. The results showed that enhanced cow dung substrate displayed an improved fermentation process with increased biogas yields. Purified biogas optimized methane content from 56% ± 0.18% for raw biogas to 95% ± 0.98% for biomethane which was ideal for liquefaction. 展开更多
关键词 BIOGAS Bio-Methane Catalysis PURIFICATION liquefaction BIO-ENERGY KINETICS
下载PDF
Numerical computation of anti-liquefaction effect of lattice-type cement-mixed soil countermeasure
15
作者 高玉峰 杨雪玲 +1 位作者 沈扬 周源 《Journal of Central South University》 SCIE EI CAS 2008年第S2期155-160,共6页
Continuous soil-cement wall confinement method to resist liquefaction is a new kind of process. However, whether it also has a good effect on anti-liquefaction or not needs to be urgently answered for earthquake engin... Continuous soil-cement wall confinement method to resist liquefaction is a new kind of process. However, whether it also has a good effect on anti-liquefaction or not needs to be urgently answered for earthquake engineering. Quiet boundary is adopted on the lateral face while free field boundary is employed at the bottom. Byrne model on dynamic pore water pressure generation is accepted and natural seismic wave EI Centro whose peak acceleration is adjusted to 0.2 g in proportion is used for input. A double-layer foundation with sandy soil in the upper portion while clay soil in the lower part is chosen as the calculation model, which is 30 m in length and 20 m in width. The groundwater level is on the ground surface. Excess pore water pressure rate is considered as a liquefaction index in the three-dimensional non-linear earthquake response computation. The anti-liquefaction effectiveness and its influencing factors, such as confinement element area are studied. For the natural double-layer foundation, it is liquefied when the excess pore water pressure rate reaches 1.0 under the seismic load. Under the same earthquake load, the peak excess pore water pressure reduces to 0.56 after adopting reinforcement of the continuous soil-cement wall, which is 46% lower than before. It indicates that continuous soil-cement wall confinement method can attain the purpose of anti-liquefaction. Accordingly, it can be a sort of engineering measure to carry on the anti-liquefaction foundation treatment. 展开更多
关键词 lattice-type cement-mixed soil COUNTERMEASURE ANTI-liquefaction EXCESS pore pressure ratio the smallest LATTICE area
下载PDF
Application of machine learning to the Vs-based soil liquefaction potential assessment
16
作者 SUI Qi-ru CHEN Qin-huang +1 位作者 WANG Dan-dan TAO Zhi-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2197-2213,共17页
Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake di... Earthquakes can cause violent liquefaction of the soil, resulting in unstable foundations that can cause serious damage to facilities such as buildings, roads, and dikes. This is a primary cause of major earthquake disasters. Therefore, the discrimination and prediction of earthquake-induced soil liquefaction has been a hot issue in geohazard research. The soil liquefaction assessment is an integral part of engineering practice. This paper evaluated a dataset of 435 seismic sand liquefaction events using machine learning algorithms. The dataset was analyzed using seven potential assessment parameters. Ten machine learning algorithms are evaluated for their ability to assess seismic sand liquefaction potential, including Linear Discriminant Analysis(LDA), Quadratic Discriminant Analysis(QDA), Naive Bayes(NB), KNearest Neighbor(KNN), Artificial Neural Network(ANN), Classification Tree(CT), Support Vector Machine(SVM), Random Forest(RF), e Xtreme Gradient Boosting(XGBoost), Light Gradient Boosting Machine(Light GBM). A 10-fold cross-validation(CV) method was used in the modeling process to verify the predictive performance of the machine learning models. The final percentages of significant parameters that influenced the prediction results were obtained as Cyclic Stress Ratio(CSR) and Shear-Wave Velocity( VS1) with 56% and 38%, respectively. The final machine learning algorithms identified as suitable for seismic sand liquefaction assessment were the CT, RF, XGBoost algorithms, with the RF algorithm performing best. 展开更多
关键词 Seismic soil liquefaction Machine learning ASSESSMENT liquefaction potential shear wave velocity
下载PDF
Effects of non-liquefiable crust layer and superstructure mass on the response of 2×2 pile groups to liquefaction-induced lateral spreading
17
作者 S.Mohsen Haeri Morteza Rajabigol +2 位作者 Saman Salaripour Hiwa Sayaf Milad Zangeneh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2701-2719,共19页
In this research,two shake table experiments were conducted to study the effects of non-liquefiable crust layer and superstructure mass on the responses of two sets of 22 pile groups to liquefactioninduced lateral spr... In this research,two shake table experiments were conducted to study the effects of non-liquefiable crust layer and superstructure mass on the responses of two sets of 22 pile groups to liquefactioninduced lateral spreading.In this regard,an inclined base layer overlain by a very loose liquefiable layer was constructed in both models;while only in one model,a non-liquefiable crust layer was built.A lumped mass,being representative of a superstructure,was attached to the cap of one pile group in both models.The models were fully instrumented with various sensors,including acceleration,displacement,and pore water pressure transducers.Also,the piles were instrumented with pair strain gauges to measure pure bending moments induced by cyclic and monotonic loadings associated with ground shaking and lateral spreading,respectively.The results showed that the existence of the non-liquefiable crust layer increases both the maximum and residual soil displacements at the free field and also the maximum bending moments in the piles.The results of the experiments indicated that the crust layer induces a high kinematic lateral soil pressure and force on the piles which are not present in the crustless case.The crust layer increases the pile cap displacement before liquefaction,albeit decreases it after liquefaction,due to the elastic rebound of the piles in the liquefiable layer.The crust layer postpones both liquefaction triggering and dissipation of excess pore water pressure.The existence of the superstructure mass on the pile caps decreases the acceleration amplitude of the pile caps,while increases their maximum displacement. 展开更多
关键词 Soil liquefaction Lateral spreading 1g shake table test Pile group Crust layer SUPERSTRUCTURE
下载PDF
Effect of Refrigerant on the Performance of a C3/MRC Liquefaction Process
18
作者 Xiao Wu Zhaoting Wang +2 位作者 Longfei Dong Yanping Xin Tianshu Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第1期25-36,共12页
The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(... The Mixed Refrigerant(MR)component is an important factor influencing the performances of natural gas lique-faction processes.However,there is a lack of systematic research about the utilization of propane pre-cooled(C3/MRC).In this paper,this mixed refrigerant cycle liquefaction process is simulated using the HYSYS software and the main influential parameters involved in the process are varied to analyze their influence on the liquefaction rate and power consumption.The results show that an effective way for lowering the power consumption of the compressor consists of reducing the flow through the compressor through optimization of the percentage of mixed refrigerant.The power consumption of the compressor in the hybrid refrigeration process is affected by both flow and pressure ratios.Its specific power consumption can be reduced by increasing the flow and decreasing the pressure ratio at the same time.The increase in refrigerant pressure at the high-pressure end can significantly mitigate the energy loss of the heat exchanger and compressor. 展开更多
关键词 REFRIGERANT C3/MRC process liquefaction performance power consumption pressure ratio hybrid refrigeration process
下载PDF
A case-based reasoning method of recognizing liquefaction pits induced by 2021 M_(W) 7.3 Madoi earthquake
19
作者 Peng Liang Yueren Xu +2 位作者 Wenqiao Li Yanbo Zhang Qinjian Tian 《Earthquake Research Advances》 CSCD 2023年第1期61-69,共9页
Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits base... Earthquake-triggered liquefaction deformation could lead to severe infrastructure damage and associated casualties and property damage.At present,there are few studies on the rapid extraction of liquefaction pits based on high-resolution satellite images.Therefore,we provide a framework for extracting liquefaction pits based on a case-based reasoning method.Furthermore,five covariates selection methods were used to filter the 11 covariates that were generated from high-resolution satellite images and digital elevation models(DEM).The proposed method was trained with 450 typical samples which were collected based on visual interpretation,then used the trained case-based reasoning method to identify the liquefaction pits in the whole study area.The performance of the proposed methods was evaluated from three aspects,the prediction accuracies of liquefaction pits based on the validation samples by kappa index,the comparison between the pre-and post-earthquake images,the rationality of spatial distribution of liquefaction pits.The final result shows the importance of covariates ranked by different methods could be different.However,the most important of covariates is consistent.When selecting five most important covariates,the value of kappa index could be about 96%.There also exist clear differences between the pre-and post-earthquake areas that were identified as liquefaction pits.The predicted spatial distribution of liquefaction is also consistent with the formation principle of liquefaction. 展开更多
关键词 Coseismic liquefaction Case-based reasoning K-nearest neighbor Covariates selection 2021 M_(w)7.3 Madoi earthquake Qinghai-Tibetan Plateau
下载PDF
Constitutive modelling of fabric effect on sand liquefaction 被引量:3
20
作者 Zhiwei Gao Dechun Lu +1 位作者 Yue Hou Xin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期926-936,共11页
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa... Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance. 展开更多
关键词 SAND ANISOTROPY liquefaction Finite element modelling Constitutive model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部