The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study....The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.展开更多
Eucalyptus grandis W.Hill ex Maiden bark was liquefied in glycerol with two types of catalysts.The chemical components of the residues with respect to temperature were examined to investigate the liquefaction behavior...Eucalyptus grandis W.Hill ex Maiden bark was liquefied in glycerol with two types of catalysts.The chemical components of the residues with respect to temperature were examined to investigate the liquefaction behavior of bark.The results reveal that sulfuric acid was more efficient in converting bark into fragments in glycerol at low temperatures B 433.15 K,equivalent to 160C than phosphoric acid.The liquefaction order of chemical components was lignin,hemicelluloses,and cellulose.The decrease of liquefaction yields at high temperatures(≤453.15 K)catalyzed by sulfuric acid was possibly a result of the recondensation of lignin and/or hemicelluloses.展开更多
基金supported by grants 200508010603 and 200711020504 from the key pro-ject of the Natural Science Foundation of the InnerMongolia Autonomous Region
文摘The liquefied product of Salixpsammophila wood was separated by thin-layer chromatography (TLC) and column chromatography, and its structure was identified by nuclear magnetic resonance (NMR) spectra in our study. The separation result indicates that the sample of liquefied S. psammophila contained at least two categories of components. The structure of the main components was guaiacyl C-1, C-2 of the hydroxyphenyl propane, i.e., the aromatic nucleus protons of lignin. Degradation and polycondensation reactions occurred when the S. psammophila wood was liquefied in phenol. Polycondensation reactions occurred among the depolymerization products from cellulose, the aromatic depolymerization products from lignin and the products of the displacement reactions between phenoxide ion and cellulose.
基金This work was partially supported by the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(TGB2016001)the Key Laboratory of Wood Industry and Furniture Engineering of Sichuan Provincial Colleges and Universitiesthe National Natural Science Foundation of China(31700578).
文摘Eucalyptus grandis W.Hill ex Maiden bark was liquefied in glycerol with two types of catalysts.The chemical components of the residues with respect to temperature were examined to investigate the liquefaction behavior of bark.The results reveal that sulfuric acid was more efficient in converting bark into fragments in glycerol at low temperatures B 433.15 K,equivalent to 160C than phosphoric acid.The liquefaction order of chemical components was lignin,hemicelluloses,and cellulose.The decrease of liquefaction yields at high temperatures(≤453.15 K)catalyzed by sulfuric acid was possibly a result of the recondensation of lignin and/or hemicelluloses.