Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes pl...Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.展开更多
Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a so...Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a soft electromagnetic actuator using liquid metal coil of Ga-In alloys, and designed several illustrative mechanical devices, such as jellyfish like robot, soft fishtail and flexible manipulator. Measurements of the liquid metal coil's electrical properties confirmed that the liquid metal coil was mechanically stable under 48% uniaxial strains. Furthermore, the resistance of the liquid metal coil is stable under 60° bending deformation. Tests on the liquid metal coil's driving properties confirmed that the liquid metal coil(55 mm×55 mm×1 mm) could reach the maximum displacement amplitude of 21.5 mm with the current of 0.48 A. It was shown that the electromagnetic interaction between the magnet and the liquid metal coil enables the coil as a highly efficient actuator. The mechanisms lying behind were interpreted and future applications of such system were discussed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21134003,21273048,51225304,and 51203023)Shanghai Outstanding Academic Leader Program,China(Grant No.15XD1500600)
文摘Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.
基金supported by Tsinghua University and the Beijing Municipal Science and Technology Funding(Grant No.Z151100003715002)
文摘Soft robot is a kind of machine form with flexible deformation capability. Making flexible actuators has recently become a hot research topic in the field. In this study, we demonstrated the facile fabrication of a soft electromagnetic actuator using liquid metal coil of Ga-In alloys, and designed several illustrative mechanical devices, such as jellyfish like robot, soft fishtail and flexible manipulator. Measurements of the liquid metal coil's electrical properties confirmed that the liquid metal coil was mechanically stable under 48% uniaxial strains. Furthermore, the resistance of the liquid metal coil is stable under 60° bending deformation. Tests on the liquid metal coil's driving properties confirmed that the liquid metal coil(55 mm×55 mm×1 mm) could reach the maximum displacement amplitude of 21.5 mm with the current of 0.48 A. It was shown that the electromagnetic interaction between the magnet and the liquid metal coil enables the coil as a highly efficient actuator. The mechanisms lying behind were interpreted and future applications of such system were discussed.