We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are th...We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.展开更多
Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of...Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of refractive index of the mixture. Here, a highly sensitive liquid filled core Photonic Crystal Fiber structure has been proposed to detect liquid mixture solution. Numerical investigation of the proposed structure is carried out by employing full vectorial Finite Element Method (FEM).展开更多
Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft ...Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron ,fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results shou that the synthesized iron fibers with a crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10μm with a diameter of about 50 nm.展开更多
Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used...Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.展开更多
A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1....A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.展开更多
This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out...This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.展开更多
A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition tem...A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.展开更多
Liquid crystal photonic bandgap (LCPBG) fibers provide a versatile and robust platform for designing optical fiber devices, which are highly tunable and exhibit novel optical properties for manipulation of guided li...Liquid crystal photonic bandgap (LCPBG) fibers provide a versatile and robust platform for designing optical fiber devices, which are highly tunable and exhibit novel optical properties for manipulation of guided light. We review the research progress on design, fabrication and development of integrated LCPBG fiber devices.展开更多
基金Supported by the Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences under Grant No U1531102the Fundamental Research Funds for the Central Universities under Grant No HEUCF181116the National Natural Science Foundation of China under Grant Nos61107059,61077047 and 11264001
文摘We propose a novel light intensity modulator based on magnetic fluid and liquid crystal(LC) filled photonic crystal fibers(PCFs). The influences of electric and magnetic fields on the transmission intensity are theoretically and experimentally analyzed and investigated. Both the electric and magnetic fields can manipulate the molecular arrangement of LC to array a certain angle without changing the refractive index of the LC. Therefore, light loss in the PCF varies with the electric and magnetic fields whereas the peak wavelengths remain constant. The experimental results show that the transmission intensity decreases with the increase of the electric and magnetic fields. The cut-off electric field is 0.899 V/um at 20 Hz and the cut-off magnetic field is 195 m T. This simple and compacted optical modulator will have a great prospect in sensing applications.
文摘Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of refractive index of the mixture. Here, a highly sensitive liquid filled core Photonic Crystal Fiber structure has been proposed to detect liquid mixture solution. Numerical investigation of the proposed structure is carried out by employing full vectorial Finite Element Method (FEM).
文摘Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron ,fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results shou that the synthesized iron fibers with a crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10μm with a diameter of about 50 nm.
文摘Photonic crystal fiber (PCF) is employed as a refractive index sensor (RIS) for solving a lot of problems in biological, physicochemical, medical, engineering fields and many environmental challenges, where it is used in many industries of food, medicines, chemical materials and material diagnosis. The kind of the PCFs was HC-1550 with three wavelengths of laser source were used;638 nm, 850 nm, and 1550 nm that are useful for recording the intended transmitted signal intensity. Therefore, the measured RI was in the range (1.469 - 1.455 RIU) at the temperature range (36 - 70)°C for the EBBA and it was (1.621 - 1.612 RIU) at the temperature range (22 - 42)°C for the MBBA. The results showed that the highest RI sensitivity was 96.335 dBm/RIU for the HC-1550 infiltrated with MBBA using the laser of wavelength 638 nm, Also, the highest temperature sensitivity was 0.2505 dBm/°C for empty HC-1550 using the laser of wavelength 1550 nm.
基金National Natural Science Foundation of China(NSFC)(61635007,61425007,61377090,61575128)Guangdong Science and Technology Department(2014A030308007,2014B050504010,2015B010105007,2015A030313541)+1 种基金Science and Technology Innovation Commission of Shenzhen(GJHZ20150313093755757,JCYJ20160520163134575,JCYJ20160427104925452)Pearl River Scholar Fellowships
文摘A liquid modified photonic crystal fiber(PCF)integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids.The refractive index of the filled liquid is higher than that of background silica,which can not only support the transmitting rod modes but also the"liquid modified core"modes propagating between the PCF core and the liquid rods.Hence,the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions,resulting in a dramatic decrease of the resonant wavelength intensity.Furthermore,there is a multi-mode interference produced by modified core modes and rod modes.Such a compact(~0.91 cm)device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature(~14.72 nm∕℃)and strain(~13.01 pm∕με)measurement.
文摘This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.
文摘A photonic crystal fiber has been filled with a cholesteric liquid crystal. A temperature sensitive photonic band gap effect was observed, which was especially pronounced around the liquid crystal phase transition temperature.
文摘Liquid crystal photonic bandgap (LCPBG) fibers provide a versatile and robust platform for designing optical fiber devices, which are highly tunable and exhibit novel optical properties for manipulation of guided light. We review the research progress on design, fabrication and development of integrated LCPBG fiber devices.