Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an...Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an example, this article expounds the current development trend of this new and promising branch of contemporary physics.展开更多
Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibit...Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329 K (0.19TL). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.展开更多
Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced...Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced nucleation and crystallization. The resulting colloidal crystals are characterized by optical microscopy and scanning electronic microscopy (SEM), and the SEM images show these crystals dominate in fcc lattice with its (111) crystallographic axis as longitudinal. The colloidal crystal filled capillary is packaged into a heat-shrink plastic tube and a fiber measurement system is designed to measure the optical property of colloidal bulk in capillary. It is found that an appreciable bandgap appears at wavelength 686 nm from the transmission spectroscopy, which is consistent with the theoretical estimation. A considerable photonic band gap of up to -10 dB and a steep photonic band edge of up to 0.25 dB/nm indicate that silica microspheres are promising for implementing optical filter applications in fiber systems.展开更多
Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configur...Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.展开更多
We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the ...We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.展开更多
An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emittin...An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.展开更多
Linear and nonlinear photophysical properties of two novel dipolar compounds named as trans- dimethyl-4-[4'-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (Xiao-1) and trans-dimethyl-4-[4'-(N,N-diphenyla...Linear and nonlinear photophysical properties of two novel dipolar compounds named as trans- dimethyl-4-[4'-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (Xiao-1) and trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (Xiao-2) are investigated by steady-state absorption and fluorescence spectroscopy, Z-scan and two-photon excited fluorescence measurements. Strong two-photon fluorescence emission and the pronounced positive solvatochromism are observed from two compounds. The two-photon absorption cross section of Xiao-2 is about 1.5 times larger than that of Xiao-1. One-color and two-color femtosecond pump-probe experiments are employed to investigate the excited state dynamics of two compounds. The relaxation lifetime of the intra-molecular charge transfer state is determined to be in the hundreds of picosecond domain for both the compounds in THF, and several tens of picosecond in DMSO solutions.展开更多
We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plat...We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe2O4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g^-1, higher than that of 68 emu·g^-1 prepared by the chemical co-precipitation method and that of 59 emu·g^-1prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe2O4 ferrites prepared by layered precursor method is 14 kA·m^-1, lower than that of 50 emu·g^-1 prepared by the co-precipitation method and that of 59 emu·g^-1 prepared by the emulsion-gel method.展开更多
A novel piezoelectricity based nano energy conversion device using vertically aligned ZnO nanowires/PVVH matrix as the working unit is proposed. Thermal energy is converted to electricity via the interaction of the PV...A novel piezoelectricity based nano energy conversion device using vertically aligned ZnO nanowires/PVVH matrix as the working unit is proposed. Thermal energy is converted to electricity via the interaction of the PVVH polymer and ZnO nanowires. The thermal properties of PVVH ave studied using Raman spectroscopy under different temperatures. The results show that the structure of PVVH is sensitive to fluctuations of the environmental temperatures. With the increasing temperature, PVVH tends to be crystallized and stress can be developed inside the polymer. The stress is responsible for the deformation and voltage generation of the ZnO nanowires.展开更多
文摘Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an example, this article expounds the current development trend of this new and promising branch of contemporary physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
基金Supported by the National Natural Science Foundation of China under Grant No 50971105.
文摘Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329 K (0.19TL). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.
文摘Silica microspheres self-assembled in glass capillary are investigated. Monodisperse silica microsphere dispersions in diameter 320nm are self-organized into a bulk cylindrical colloidal crystal by evaporation induced nucleation and crystallization. The resulting colloidal crystals are characterized by optical microscopy and scanning electronic microscopy (SEM), and the SEM images show these crystals dominate in fcc lattice with its (111) crystallographic axis as longitudinal. The colloidal crystal filled capillary is packaged into a heat-shrink plastic tube and a fiber measurement system is designed to measure the optical property of colloidal bulk in capillary. It is found that an appreciable bandgap appears at wavelength 686 nm from the transmission spectroscopy, which is consistent with the theoretical estimation. A considerable photonic band gap of up to -10 dB and a steep photonic band edge of up to 0.25 dB/nm indicate that silica microspheres are promising for implementing optical filter applications in fiber systems.
文摘Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.
基金Supported by the National Natural Science Foundation of China under Grant No 60476011.
文摘We establish a new model based on fractal theory and cubic spline interpolation to study the effective thermal conductivity of isotropic porous silica low-k materials. A 3D fractal model is introduced to describe the structure of the silica xerogel and silica hybrid materials (such as methylsilsesquioxane, MSQ). Combined with fractal structure, a more suitable medium approximation is developed to study the isotropic porous silica xerogel and MSQ materials. Cubic spline interpolation for fitting discrete predictions from the fractal model is used to obtain the continuous function of the effective thermal conductivity versus porosity. Compared with other common models, the effective thermal conductivity predicted by our model presents better agreement with the experimental data for all porosity. These results indicate that the proposed model is valid.
基金Supported by the National Natural Science Foundation of China under Grant No 20472060.
文摘An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10674031 and 60978055, the Innovation Program of Shanghai Municipal Education Commission (No 09YZ160), and Shanghai Normal University (No SK200839).
文摘Linear and nonlinear photophysical properties of two novel dipolar compounds named as trans- dimethyl-4-[4'-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (Xiao-1) and trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (Xiao-2) are investigated by steady-state absorption and fluorescence spectroscopy, Z-scan and two-photon excited fluorescence measurements. Strong two-photon fluorescence emission and the pronounced positive solvatochromism are observed from two compounds. The two-photon absorption cross section of Xiao-2 is about 1.5 times larger than that of Xiao-1. One-color and two-color femtosecond pump-probe experiments are employed to investigate the excited state dynamics of two compounds. The relaxation lifetime of the intra-molecular charge transfer state is determined to be in the hundreds of picosecond domain for both the compounds in THF, and several tens of picosecond in DMSO solutions.
基金Supported by the National Natural Science Foundation of China under Grant No 60971019.
文摘We prepare NiZnFe2O4 soft magnetic ferrites with different molar ratios with the layered precursor method and investigate their magnetic properties. In the layered precursor, metal ions are scattered on the layer plate in a certain way on account of the effect of lowest lattice energy and lattice orientation. After high temperature calcinations, spinel ferrites with uniform structural component and single magnetic domain can be obtained, and the magnetic property is improved greatly. NiZnFe2O4 ferrites prepared have the best specific saturation magnetization of 79.15 emu·g^-1, higher than that of 68 emu·g^-1 prepared by the chemical co-precipitation method and that of 59 emu·g^-1prepared by the emulsion-gel method. Meanwhile the coercivity of NiZnFe2O4 ferrites prepared by layered precursor method is 14 kA·m^-1, lower than that of 50 emu·g^-1 prepared by the co-precipitation method and that of 59 emu·g^-1 prepared by the emulsion-gel method.
基金Supported by the National Natural Science Foundation of China under Grant No 51072119, the Science and Technology Commission of Shanghai Municipality under Grant Nos 09QA1404100 and 10231201103, the National Basic Research Program of China under Grant No 2010CB234609, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars , State Education Ministry.
文摘A novel piezoelectricity based nano energy conversion device using vertically aligned ZnO nanowires/PVVH matrix as the working unit is proposed. Thermal energy is converted to electricity via the interaction of the PVVH polymer and ZnO nanowires. The thermal properties of PVVH ave studied using Raman spectroscopy under different temperatures. The results show that the structure of PVVH is sensitive to fluctuations of the environmental temperatures. With the increasing temperature, PVVH tends to be crystallized and stress can be developed inside the polymer. The stress is responsible for the deformation and voltage generation of the ZnO nanowires.