Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the...Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the mass transfer performance and processing capacity. In view of the above, this paper studies the liquid–liquid flow and liquid holdup in RSR under various conditions with a high-speed camera. The paper firstly demonstrates two flow patterns and liquid holdup patterns that we obtained from our experiment and then presents in succession a flow pattern and a liquid holdup criterion for the transition of film flow to filament flow and complete filling to incomplete filling. It is found that experimental parameters, including rotor–stator distance, rotational speed and volume flow rate exert great influence on the average droplet diameter and size distribution. Besides, by comparison and contrast, we also find that the experimental values match well with our previous predicted calculations of the average diameter, and the relation between the average diameter and the mean energy dissipation rate.展开更多
In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 perio...In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 periods of the 2016 Chinese National Arctic Research Expedition. We calculated the visibility using the Mie theory and the DSD data and then compared the calculated with the observed visibility. The comparison shows that the deviations in the calculated visibility caused by DSD data sampling errors cannot be ignored. During navigation, wind and ship speeds tended to push or pull the sampled air and cause turbulence pulsation, which influenced the sampling of the fog droplet spectrometer. This influence is weak when the liquid water content(LWC) is high but becomes stronger as the LWC decreases. Taking the sailing speed and heading into consideration, the wind speed component parallel and perpendicular to the air inlet of the fog droplet spectrometer exhibit different laws in the deviation. By performing a fitting analysis of the calculated and observed visibilities under different wind speeds and wind directions, here, we present two sets of correction coefficients for the two wind-speed components and a method for correcting the calculated visibility. This correction method shows excellent results.展开更多
液体射流的破碎是一个复杂的非线性动力学问题。为研究破碎过程中气液间的动量交换机制,利用Fluent软件进行数值模拟,得到不同气流冲击液体过程中动量交换量和动量交换效率的变化规律,并进一步通过VOF to DPM模型对规律进行了验证。结...液体射流的破碎是一个复杂的非线性动力学问题。为研究破碎过程中气液间的动量交换机制,利用Fluent软件进行数值模拟,得到不同气流冲击液体过程中动量交换量和动量交换效率的变化规律,并进一步通过VOF to DPM模型对规律进行了验证。结果表明:在气流速度为40~90 m/s,气流密度为1.177~7.356 kg/m^(3)的工况范围内,动量交换效率在62%~83%变化。气液之间的动量交换量随着气流速度的增大而增大,气体密度不变时,随着气流速度的增大,气液间的动量交换效率逐渐降低,最后趋于稳定;气流速度一致时,动量交换效率随气体密度的增大而减小,最后逐渐趋于稳定。在气流物性不变时,增大液体的密度和黏度均会导致气液动量交换效率的增大。将雾滴粒径分布作为液体破碎效果的计算指标,对动量交换机制进行验证,发现在气液动量交换量相等时,液体破碎后的粒径规律基本一致,最大误差为15.3%。展开更多
Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance i...Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance in the optimal design of extraction columns as well as mixer–settlers. In this paper, the method of built-in endoscopic probe combined with pulse laser was adopted to measure the droplet size in liquid–liquid dispersions with a pump-impeller in a rectangular mixer. The dispersion law of droplets with holdup range 1% to 24% in batch process and larger flow ratio range 1/5 to 5/1 in continuous process was studied. Under the batch operation condition, the DSD abided by log-normal distribution. With the increase of impeller speed or decrease of dispersed phase holdup, the d32 decreased. In addition, a prediction model of d32 of kerosene/deionized system was established as d32/D = 0.13(1 + 5.9φ)We-0.6. Under the continuous operation condition, the general model for droplet size prediction of kerosene/water system was presented as d32/D = C3(1 + C4φ)We-0.6. For the surfactant system and extraction system, the prediction models met a general model as d32/D = bφnWe-0.6.展开更多
Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diamet...Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diameter, size distribution and liquid flux distribution were quantitatively analyzed. The result showed that the mean droplet diameter decreased with the increase of rotational speed and the number of rotors;whilst there is little influence on the inlet flow rate. In the experimental range, the minimum value of mean droplet diameter is 0.57 mm, 0.48 mm, 0.41 mm in the two-staged, three-staged and four-staged rotors, respectively. The Rosin–Rammler(R–R) distribution could describe the droplet size distribution appropriately, and it became uniform with the increase of rotational speed and the number of rotor, while the inlet flow rate had little effect on the droplet size distribution. The liquid flux distribution curves were always unimodal. With the increase of rotational speed, the location of maximum liquid flux ratio moved from zone 3 to zone 4 and this value decreased from 22.1% to 18.1%. Using Coefficient of Variation(CV) to indicate the uniformity of liquid flux distribution, it was found that the CV decreases from 47.5% to 22.7%when the number of rotor increased from 2 to 4.展开更多
基金Supported by the National Natural Science Foundation of China(21776180,21776181,21306116)Hou Hua Ku Project of Sichuan University(2018SCUH0012).
文摘Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the mass transfer performance and processing capacity. In view of the above, this paper studies the liquid–liquid flow and liquid holdup in RSR under various conditions with a high-speed camera. The paper firstly demonstrates two flow patterns and liquid holdup patterns that we obtained from our experiment and then presents in succession a flow pattern and a liquid holdup criterion for the transition of film flow to filament flow and complete filling to incomplete filling. It is found that experimental parameters, including rotor–stator distance, rotational speed and volume flow rate exert great influence on the average droplet diameter and size distribution. Besides, by comparison and contrast, we also find that the experimental values match well with our previous predicted calculations of the average diameter, and the relation between the average diameter and the mean energy dissipation rate.
基金supported by the National Natural Science Foundation of China (No. 41330960)the National Major Science Project of China for Global Change Research (No. 2015CB953900)the Major State Basic Research Development Program (No. 2016YFC1402702)
文摘In this study, we measured the droplet size distribution(DSD) and visibility of sea fog using a fog droplet spectrometer and visibility meter, respectively, during the July 23-August 3 and August 22-September 13 periods of the 2016 Chinese National Arctic Research Expedition. We calculated the visibility using the Mie theory and the DSD data and then compared the calculated with the observed visibility. The comparison shows that the deviations in the calculated visibility caused by DSD data sampling errors cannot be ignored. During navigation, wind and ship speeds tended to push or pull the sampled air and cause turbulence pulsation, which influenced the sampling of the fog droplet spectrometer. This influence is weak when the liquid water content(LWC) is high but becomes stronger as the LWC decreases. Taking the sailing speed and heading into consideration, the wind speed component parallel and perpendicular to the air inlet of the fog droplet spectrometer exhibit different laws in the deviation. By performing a fitting analysis of the calculated and observed visibilities under different wind speeds and wind directions, here, we present two sets of correction coefficients for the two wind-speed components and a method for correcting the calculated visibility. This correction method shows excellent results.
文摘液体射流的破碎是一个复杂的非线性动力学问题。为研究破碎过程中气液间的动量交换机制,利用Fluent软件进行数值模拟,得到不同气流冲击液体过程中动量交换量和动量交换效率的变化规律,并进一步通过VOF to DPM模型对规律进行了验证。结果表明:在气流速度为40~90 m/s,气流密度为1.177~7.356 kg/m^(3)的工况范围内,动量交换效率在62%~83%变化。气液之间的动量交换量随着气流速度的增大而增大,气体密度不变时,随着气流速度的增大,气液间的动量交换效率逐渐降低,最后趋于稳定;气流速度一致时,动量交换效率随气体密度的增大而减小,最后逐渐趋于稳定。在气流物性不变时,增大液体的密度和黏度均会导致气液动量交换效率的增大。将雾滴粒径分布作为液体破碎效果的计算指标,对动量交换机制进行验证,发现在气液动量交换量相等时,液体破碎后的粒径规律基本一致,最大误差为15.3%。
基金Supported by the National Natural Science Foundation of China(NSFC)(21636004)the National Safety Academy Foundation(U1530107)the National Basic Research Program of China(2012CBA01203).
文摘Drop size distribution(DSD) or mean droplet size(d32) and liquid holdup are two key parameters in a liquid–liquid extraction process. Understanding and accurately predicting those parameters are of great importance in the optimal design of extraction columns as well as mixer–settlers. In this paper, the method of built-in endoscopic probe combined with pulse laser was adopted to measure the droplet size in liquid–liquid dispersions with a pump-impeller in a rectangular mixer. The dispersion law of droplets with holdup range 1% to 24% in batch process and larger flow ratio range 1/5 to 5/1 in continuous process was studied. Under the batch operation condition, the DSD abided by log-normal distribution. With the increase of impeller speed or decrease of dispersed phase holdup, the d32 decreased. In addition, a prediction model of d32 of kerosene/deionized system was established as d32/D = 0.13(1 + 5.9φ)We-0.6. Under the continuous operation condition, the general model for droplet size prediction of kerosene/water system was presented as d32/D = C3(1 + C4φ)We-0.6. For the surfactant system and extraction system, the prediction models met a general model as d32/D = bφnWe-0.6.
基金Supported by ‘‘The Design and Optimisation of High Speed Rotating Mixing Nozzles for Liquid-Liquid Applications” PhD Studentship provided by Huntsman Europe(Belgium)
文摘Droplet characteristics in the cavity zone of a multi-staged high speed disperser with single inlet were studied in this paper. The influences of both the operating and structural parameters on the mean droplet diameter, size distribution and liquid flux distribution were quantitatively analyzed. The result showed that the mean droplet diameter decreased with the increase of rotational speed and the number of rotors;whilst there is little influence on the inlet flow rate. In the experimental range, the minimum value of mean droplet diameter is 0.57 mm, 0.48 mm, 0.41 mm in the two-staged, three-staged and four-staged rotors, respectively. The Rosin–Rammler(R–R) distribution could describe the droplet size distribution appropriately, and it became uniform with the increase of rotational speed and the number of rotor, while the inlet flow rate had little effect on the droplet size distribution. The liquid flux distribution curves were always unimodal. With the increase of rotational speed, the location of maximum liquid flux ratio moved from zone 3 to zone 4 and this value decreased from 22.1% to 18.1%. Using Coefficient of Variation(CV) to indicate the uniformity of liquid flux distribution, it was found that the CV decreases from 47.5% to 22.7%when the number of rotor increased from 2 to 4.
文摘立体喷射型塔板的喷射状况对气液两相接触面积有重要影响。在直径570 mm的冷模实验塔内,采用高速摄像仪对CTST的喷射过程参数进行了实验研究,并且基于不稳定波动理论建立了液滴群平均粒径的计算模型。结果表明:喷射孔气速是影响喷射锥角的关键因素,随着喷射孔气速的增加喷射锥角逐渐增大,当喷射孔气速超过7.5 m s-1时,喷射锥角趋于恒定,其数值稳定在55°左右。随着气速的增加喷射孔处液膜速度显著增大,而液体流量增加时液膜速度略有减小,越靠近喷射孔顶端液膜速度越大。喷射区域内液滴的分布密度接近于Rosin-Rammler分布,在喷射锥角为[20°,40°]区间内的液滴数量比较集中,随着气速和液体流量的增大,液滴分布密度逐渐趋于均匀。液滴群平均粒径随气速的增加而减小,随液量的增加略有增大。正常工作范围内,液滴群平均粒径为1.0~2.5 mm。