The electrochemical migration(ECM) behavior and mechanism of immersion silver processing circuit board(PCB-ImAg)and hot air solder leveling circuit board(PCB-HASL) under the 0.1 mol/L Na2SO4 absorbed thin liquid...The electrochemical migration(ECM) behavior and mechanism of immersion silver processing circuit board(PCB-ImAg)and hot air solder leveling circuit board(PCB-HASL) under the 0.1 mol/L Na2SO4 absorbed thin liquid films with different thicknesses were investigated using stereo microscopy and scanning electron microscopy(SEM).Meanwhile,the corrosion tendency and kinetics rule of metal plates after bias application were analyzed with the aid of electrochemical impedance spectroscopy(EIS)and scanning Kelvin probe(SKP).Results showed that under different humidity conditions,the amount of migrating corrosion products of silver for PCB-ImAg was limited,while on PCB-HASL both copper dendrites and precipitates such as sulfate and metal oxides of copper/tin were found under a high humidity condition(exceeding 85%).SKP results indicated that the cathode plate of two kinds of PCB materials had a higher corrosion tendency after bias application.An ECM model involving multi-metal reactions was proposed and the differences of ECM behaviors for two kinds of PCB materials were compared.展开更多
A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convectiv...A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function. Consequently, velocity and temperature gradients are eliminated, and the complete formulation is written in terms of velocity and temperature. This provides considerable reduction in storage and computational requirements while improving accuracy. The non-linear equation systems of boundary element discretization are solved by the quasi-Newton iterative scheme with Broyden's update. The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained, and the variations of Nusselt numbers along the wall-liquid interface are also given. There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave. This special flow and thermal process can be a mechanism to enhance heat transport.展开更多
The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an ...The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux and somewhat lower than that without wall heating for impure fluids such as water air system. The thermodynamic analysis conducted gave a theoretical basis for the experimental observations. The effective capillary radius was correlated with the mass flow rate. The experimental results and analysis showed that the interfacial evaporation should be taken into account in the study of falling liquid film heat transfer.展开更多
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of ...The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.展开更多
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel...Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.展开更多
The results of an experimental study on critical heat fluxes(CHF)during the nucleate boiling of the HFE-7100 dielectric liquid in horizontal layers of different heights at atmospheric pressure are presented.The existe...The results of an experimental study on critical heat fluxes(CHF)during the nucleate boiling of the HFE-7100 dielectric liquid in horizontal layers of different heights at atmospheric pressure are presented.The existence of a critical layer height has been established.In layers above the critical layer height,a hydrodynamic boiling crisis occurs;in thinner layers,a surface drying crisis occurs.At a layer height equal to the critical value,a dry spot first appears,followed by transition boiling,which gradually spreads to the entire heating surface.In these experiments,the critical layer height was equal to 6 mm.In a layer of liquid with a critical layer height of 6 mm,a two-dimensional Taylor instability was observed in the transition boiling mode when the ratio of the diameter of the"vapor jets"to the distance between them,as well as the void fractions in the layer(-π/16),corresponded to the main provisions of the Zuber theory.The calculation of CHF using the relations of Zuber’s theory,when approaching the crisis from the transition boiling side and taking into account the real geometric dimensions,aligns well with the experimental results.展开更多
Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% N...Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.展开更多
Structured packing is a good candidate for CO2 capture process because of its higher mass transfer efficiency and lower pressure drop. Now, the challenging problem of CO2 capture and storage demands more and more effi...Structured packing is a good candidate for CO2 capture process because of its higher mass transfer efficiency and lower pressure drop. Now, the challenging problem of CO2 capture and storage demands more and more efficiency equipment. The aim of the present study is to investigate the liquid film characteristics under counter current gas phase and throw some insight into the enhancing mechanism of mass transfer performance in structured packing. A high speed digital camera, non-intrusive measurement technique, was used. Water and air were working fluids. Experiments were carried out for different gas/liquid flow rates and different inclination angles. The time-average and instantaneous film widths for each set of flow parameters were calculated. It is shown that the effects of gas phase could be neglected for lower flow rate, and then, become more pronounced at higher flow rate. According to instantaneous film width, three different stages can be distinguished. One is the constant width of liquid film. The second is the slight decrease of film width and the smooth surface. This kind of character will lead to less interfacial area and deteriorate the packing mass transfer performance. For the third stage, the variation of film width shows clearly chaotic behavior. The prediction model was also developed in present work. The predicted and experimental results are in good agreement.展开更多
Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficienc...Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficiency between different phases. Experimental observations were conducted for droplet impingements with different fluids, droplet sizes and velocities, and film thicknesses. The observed transition boundaries were compared with the models developed by different authors. For impingement on a deep pool surface, the Marengo and Tropea correlation for splashing does not agree with the experimental results in this study. The Bai and Gosman critical Weber number for bouncing agrees with the water results but not the oil results. Three new correlations for transition boundaries between bouncing, coalescence, jetting and splashing were proposed and compared with the experimental observations.展开更多
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow co...The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.展开更多
Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dyna...Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.展开更多
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize...Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.展开更多
The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thicknes...The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%.展开更多
The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative h...The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.展开更多
Short path distillation (SPD) is a kind of high vacuum distillation method, which is suitable for the separation of high boiling, heat sensitivity and viscidity products.In this paper,through measuring the phase-avera...Short path distillation (SPD) is a kind of high vacuum distillation method, which is suitable for the separation of high boiling, heat sensitivity and viscidity products.In this paper,through measuring the phase-averaged velocity distributions with a conditional sampling method of the particle imaging velocimetry (PIV), the liquid flow field that affects the heat and mass transfer of evaporating thin-film in an SPD evaporator is investigated.Measured results show that the flow velocities decrease rapidly apart from the wiper at different wiper velocities, the maximum velocity appears before wipers, and the quicker the wiping, the larger the flow velocity. Meanwhile, the evaluation of numerical calculations is carried out.The measured velocity distributions indicate clearly the effect of the wiper both on the flow field along its moving direction and on the vortices behind the wiper.Simulation data show that the performance of liquid flow field on the heating surface not only agrees with the experimental results well,but also can give further more information, such as the distribution of turbulent kinetic energy.In this study,turbulent kinetic energy mainly distributes before wipers and laminar flow appears far away from the wipers.展开更多
Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the ...Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.展开更多
The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are ...The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior.展开更多
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o...The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.展开更多
The isothermal single-component multi-phase lattice Boltzmann method(LBM)combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.T...The isothermal single-component multi-phase lattice Boltzmann method(LBM)combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.The entire process of the liquid film rupture can be divided into two stages.In Stage 1,the particle contacts with the liquid film and moves into it due to the interfacial force and finally penetrates the liquid film.Then in Stage 2,the upper and lower liquid surfaces of the thin film are driven by the capillary force and approach to each other along the surface of the particle,resulting in a complete rupture.It is found that a hydrophobic particle with a contact angle of 106.7°shows the shortest rupture duration when the liquid film thickness is less than the particle radius.When the thickness of the liquid film is greater than the immersed depth of the particle at equilibrium,the time of liquid film rupture caused by a hydrophobic particle will be increased.On the other hand,a moderately hydrophilic particle can form a bridge in the middle of the liquid film to enhance the stability of the thin liquid film.展开更多
基金Project(51271032)supported by the National Natural Science Foundation of China
文摘The electrochemical migration(ECM) behavior and mechanism of immersion silver processing circuit board(PCB-ImAg)and hot air solder leveling circuit board(PCB-HASL) under the 0.1 mol/L Na2SO4 absorbed thin liquid films with different thicknesses were investigated using stereo microscopy and scanning electron microscopy(SEM).Meanwhile,the corrosion tendency and kinetics rule of metal plates after bias application were analyzed with the aid of electrochemical impedance spectroscopy(EIS)and scanning Kelvin probe(SKP).Results showed that under different humidity conditions,the amount of migrating corrosion products of silver for PCB-ImAg was limited,while on PCB-HASL both copper dendrites and precipitates such as sulfate and metal oxides of copper/tin were found under a high humidity condition(exceeding 85%).SKP results indicated that the cathode plate of two kinds of PCB materials had a higher corrosion tendency after bias application.An ECM model involving multi-metal reactions was proposed and the differences of ECM behaviors for two kinds of PCB materials were compared.
基金This project was financially supported by the National Natural Science Foundation of China
文摘A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers. The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function. Consequently, velocity and temperature gradients are eliminated, and the complete formulation is written in terms of velocity and temperature. This provides considerable reduction in storage and computational requirements while improving accuracy. The non-linear equation systems of boundary element discretization are solved by the quasi-Newton iterative scheme with Broyden's update. The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained, and the variations of Nusselt numbers along the wall-liquid interface are also given. There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave. This special flow and thermal process can be a mechanism to enhance heat transport.
基金the National Natural Science Foundationof China (No.5 9995 5 5 0 - 3)
文摘The interfacial evaporation of falling water films with wall heating was experimentally studied and analyzed. The results presented in this paper showed that the capillary induced interfacial evaporation played an important role in heat transfer of a falling liquid film. It would be independent of the wall heat flux and somewhat lower than that without wall heating for impure fluids such as water air system. The thermodynamic analysis conducted gave a theoretical basis for the experimental observations. The effective capillary radius was correlated with the mass flow rate. The experimental results and analysis showed that the interfacial evaporation should be taken into account in the study of falling liquid film heat transfer.
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
基金supported by the National Natural Science Foundation of China (Grant Nos.52375172,52075093,and 51905089).
文摘The agitated thin film evaporator(ATFE),which is known for its high efficiency,force the material to form a film through the scraping process of a scraper,followed by evaporation and purification.The complex shape of the liquid film inside the evaporator can significantly affect its evaporation capability.This work explores how change in shape of the liquid films affect the evaporation of the materials with non-Newtonian characteristics,achieved by changing the structure of the scraper.Examining the distribution of circumferential temperature,viscosity,and mass transfer of the flat liquid film shows that the film evaporates rapidly in shear-thinning region.Various wavy liquid films are developed by using shear-thinning theory,emphasizing the flow condition in the thinning area and the factors contributing to the exceptional evaporation capability.Further exploration is conducted on the spread patterns of the wavy liquid film and flat liquid film on the evaporation wall throughout the process.It is noted that breaking the wavy liquid film on the evaporating wall during evaporation is challenging due to its film-forming condition.For which the fundamental causes are demonstrated by acquiring the data regarding the flow rate and temperature of the liquid film.The definitive findings of the analysis reveal a significant improvement in the evaporation capability of the wavy liquid film.This enhancement is attributed to increasing the shear-thinning areas and maintaining the overall shape of the film throughout the entire evaporation process.
基金the National Natural Science Foundation of China(No.62173049)the Open Fund of the Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.
基金funded by the Russian Science Foundation,Grant No.23-19-00245.
文摘The results of an experimental study on critical heat fluxes(CHF)during the nucleate boiling of the HFE-7100 dielectric liquid in horizontal layers of different heights at atmospheric pressure are presented.The existence of a critical layer height has been established.In layers above the critical layer height,a hydrodynamic boiling crisis occurs;in thinner layers,a surface drying crisis occurs.At a layer height equal to the critical value,a dry spot first appears,followed by transition boiling,which gradually spreads to the entire heating surface.In these experiments,the critical layer height was equal to 6 mm.In a layer of liquid with a critical layer height of 6 mm,a two-dimensional Taylor instability was observed in the transition boiling mode when the ratio of the diameter of the"vapor jets"to the distance between them,as well as the void fractions in the layer(-π/16),corresponded to the main provisions of the Zuber theory.The calculation of CHF using the relations of Zuber’s theory,when approaching the crisis from the transition boiling side and taking into account the real geometric dimensions,aligns well with the experimental results.
基金supported by the Major State Basic Research and Development Program of China (No.2004CB619102)
文摘Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.
基金Supported by the National Natural Science Foundation of China (20070003154), the National High Technology Research and Development Program of China (2006AA05Z316, 2006AA030202), the Specialized Research Fund for Doctoral Program of Higher Education of China (20070003154), and the Key Program for International Cooperation of Science and Technology, China (2001CB711203).
文摘Structured packing is a good candidate for CO2 capture process because of its higher mass transfer efficiency and lower pressure drop. Now, the challenging problem of CO2 capture and storage demands more and more efficiency equipment. The aim of the present study is to investigate the liquid film characteristics under counter current gas phase and throw some insight into the enhancing mechanism of mass transfer performance in structured packing. A high speed digital camera, non-intrusive measurement technique, was used. Water and air were working fluids. Experiments were carried out for different gas/liquid flow rates and different inclination angles. The time-average and instantaneous film widths for each set of flow parameters were calculated. It is shown that the effects of gas phase could be neglected for lower flow rate, and then, become more pronounced at higher flow rate. According to instantaneous film width, three different stages can be distinguished. One is the constant width of liquid film. The second is the slight decrease of film width and the smooth surface. This kind of character will lead to less interfacial area and deteriorate the packing mass transfer performance. For the third stage, the variation of film width shows clearly chaotic behavior. The prediction model was also developed in present work. The predicted and experimental results are in good agreement.
文摘Knowledge of droplet dynamics provides the basis of predicting pressure drops, holdups and corrosion inhibitor distribution in multiphase flow. Droplet size and its distribution also determine the separation efficiency between different phases. Experimental observations were conducted for droplet impingements with different fluids, droplet sizes and velocities, and film thicknesses. The observed transition boundaries were compared with the models developed by different authors. For impingement on a deep pool surface, the Marengo and Tropea correlation for splashing does not agree with the experimental results in this study. The Bai and Gosman critical Weber number for bouncing agrees with the water results but not the oil results. Three new correlations for transition boundaries between bouncing, coalescence, jetting and splashing were proposed and compared with the experimental observations.
基金sponsored by the National Natural Science Foundation of China (Grant No. 51504279)Shandong Provincial Natural Science Foundation, China (ZR2014EEQ021)+2 种基金Qingdao Science and Technology (15-9-1-96-jch)the Fundamental Research Funds for the Central Universities (17CX02073, 17CX02011A and R1502039A)973 Project (2015CB251206)
文摘The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
基金Project(U1261107)supported by the National Natural Science Foundation of China
文摘Combined with the kinetic model of liquid film spreading, a new numerical method of solid-liquid-gas three-phase flow was developed for the moving of contact line, which was a hybrid method of computational fluid dynamics and lattice Boltzmalm method (LBM). By taking the effect of molecule force in droplet and the wall surface on liquid film into account, the changing law of contact angle with different surface tensions was analyzed on glass and aluminum foil surfaces. Compared with experimental results, the standard deviation by using LBM is less than 0.5°, which validates the feasibility of LBM simulation on the dynamic process of liquid film spreading. In addition, oscillations are discovered both at the initial and end phases. The phenomenon of retraction is also found and the maximum retraction angle is 7.58°. The obtained result shows that the retraction is proved to be correlative with precursor film by tracking the volume change of liquid film contour. Furthermore, non-dimensional coefficient 2 is introduced to measure the liquid film retraction capacity.
基金supported by the National Natural Science Foundation of China(41974139,42274148,42074142)。
文摘Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.
基金supported by National Natural Science Foundation of China(42074142,51527805)。
文摘The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%.
基金Supported by the National Natural Science Foundation of China (No. 59995550-3) and Science Funds from the Ministry of Education (No. 97000357).
文摘The interfacial evaporative heat transfer was included in the semi-empirical study of the heat transfer for the falling liquid film flow. The investigations showed that, the inclusion of the interfacial eveiporative heat transfer in the turbulent model would lower the predicted convective heat transfer coefficient. Predictions of the new model resulted in a prominent deviation from that predictions of the normal model in the case of large mass flow rate and low wall heat flux. This deviation will be decreased with increasing wall heat flux, such that it will be asymptotic zero at very high wall heat flux. Predictions of the new model agreed well with the current experimental measurements. This study has verified that the Reynolds number is not the sole crucial parameter for heat transfer of falling liquid film flow, and wall heat flux will be another important independent parameter. This result is consistent with our previous studies.
文摘Short path distillation (SPD) is a kind of high vacuum distillation method, which is suitable for the separation of high boiling, heat sensitivity and viscidity products.In this paper,through measuring the phase-averaged velocity distributions with a conditional sampling method of the particle imaging velocimetry (PIV), the liquid flow field that affects the heat and mass transfer of evaporating thin-film in an SPD evaporator is investigated.Measured results show that the flow velocities decrease rapidly apart from the wiper at different wiper velocities, the maximum velocity appears before wipers, and the quicker the wiping, the larger the flow velocity. Meanwhile, the evaluation of numerical calculations is carried out.The measured velocity distributions indicate clearly the effect of the wiper both on the flow field along its moving direction and on the vortices behind the wiper.Simulation data show that the performance of liquid flow field on the heating surface not only agrees with the experimental results well,but also can give further more information, such as the distribution of turbulent kinetic energy.In this study,turbulent kinetic energy mainly distributes before wipers and laminar flow appears far away from the wipers.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2014GB125003 and 2013GB114002)National Natural Science Foundation of China(No.11105044)
文摘Numerical and experimental investigation results on the magnetohydrodynamics(MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity(V), the chute width(W) and the inlet film thickness(d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field,especially small radial magnetic fields(Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved.
基金supported by the National Natural Science Foundation of China (42074142, 51527805, 41974139)China Postdoctoral Science Foundation (2020M680969, 2021T140099)the Fundamental Research Funds for the Central Universities (N2104013)。
文摘The study of liquid film characteristics in multiphase flow is a very important research topic, however,the characteristics of the liquid film around Taylor bubble structure in gas, oil and water three-phase flow are not clear. In the present study, a novel liquid film sensor is applied to measure the distributed signals of the liquid film in three-phase flow. Based on the liquid film signals, the liquid film characteristics including the structural characteristics and the nonlinear dynamics characteristics in three-phase flows are investigated for the first time. The structural characteristics including the proportion, the appearance frequency and the thickness of the liquid film are obtained and the influences of the liquid and gas superficial velocities and the oil content on them are investigated. To investigate the nonlinear dynamics characteristics of the liquid film with the changing flow conditions, the entropy analysis is introduced to successfully uncover and quantify the dynamic complexity of the liquid film behavior.
基金supported by National Natural Science Foundation of China (52006242)National Natural Science Foundation of China (52192623)+1 种基金Science Foundation of China University of Petroleum,Beijing (ZX20200126)Science and technology program for strategic cooperation of CNPC–China University of Petroleum (ZLZX2020-05)。
文摘The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.
基金supported by the National Key Technologies Research and Development(R&D)Program by the Ministry of Science and Technology of China(No.2017YFB0406100)the National Natural Science Foundation of China(No.51676123)。
文摘The isothermal single-component multi-phase lattice Boltzmann method(LBM)combined with the particle motion model is used to simulate the detailed process of liquid film rupture induced by a single spherical particle.The entire process of the liquid film rupture can be divided into two stages.In Stage 1,the particle contacts with the liquid film and moves into it due to the interfacial force and finally penetrates the liquid film.Then in Stage 2,the upper and lower liquid surfaces of the thin film are driven by the capillary force and approach to each other along the surface of the particle,resulting in a complete rupture.It is found that a hydrophobic particle with a contact angle of 106.7°shows the shortest rupture duration when the liquid film thickness is less than the particle radius.When the thickness of the liquid film is greater than the immersed depth of the particle at equilibrium,the time of liquid film rupture caused by a hydrophobic particle will be increased.On the other hand,a moderately hydrophilic particle can form a bridge in the middle of the liquid film to enhance the stability of the thin liquid film.