Piping installed in nuclear power plants is affected by various types of degradation mechanisms and may be ruptured due to gradual thinning. The degradation mechanisms such as flow-accelerated corrosion (FAC), cavitat...Piping installed in nuclear power plants is affected by various types of degradation mechanisms and may be ruptured due to gradual thinning. The degradation mechanisms such as flow-accelerated corrosion (FAC), cavitation, liquid droplet impingement erosion (LDIE), etc., can lead to costly outages and repairs and possibly affect plant reliability. In August 2008, the header pipe in the high pressure feedwater heater vent system leaked at a Korean nuclear power plant. After cutting the pipe during refueling outage, it was identified that the leak was due to LDIE. This paper presents the numerical analysis results, using various multi-phase models of ANSYS FLUENT for the purpose of identifying the cause of the LDIE. The numerical analysis methods which are most similar to the damage of the pipe are proposed for the comparison of analysis results with each multi-phase model.展开更多
文摘Piping installed in nuclear power plants is affected by various types of degradation mechanisms and may be ruptured due to gradual thinning. The degradation mechanisms such as flow-accelerated corrosion (FAC), cavitation, liquid droplet impingement erosion (LDIE), etc., can lead to costly outages and repairs and possibly affect plant reliability. In August 2008, the header pipe in the high pressure feedwater heater vent system leaked at a Korean nuclear power plant. After cutting the pipe during refueling outage, it was identified that the leak was due to LDIE. This paper presents the numerical analysis results, using various multi-phase models of ANSYS FLUENT for the purpose of identifying the cause of the LDIE. The numerical analysis methods which are most similar to the damage of the pipe are proposed for the comparison of analysis results with each multi-phase model.