期刊文献+
共找到1,185篇文章
< 1 2 60 >
每页显示 20 50 100
An ionic liquid-assisted strategy for enhanced anticorrosion of low-energy PEO coatings on magnesium–lithium alloy 被引量:2
1
作者 You Zhang Chuping Chen +3 位作者 Haoyue Tian Shuqi Wang Chen Wen Fei Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2380-2396,共17页
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab... A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance. 展开更多
关键词 Magnesium-lithium alloy Plasma electrolytic oxidation Low energy Ionic liquid Corrosion resistance
下载PDF
Mechanical and corrosion properties of full liquid phase sintered WE43 magnesium alloy specimens fabricated via binder jetting additive manufacturing
2
作者 Dae Hyun Cho David Dean Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2711-2724,共14页
This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev... This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time. 展开更多
关键词 Magnesium alloy liquid phase sintering Additive manufacturing Binder jetting process BIODEGRADATION
下载PDF
Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet
3
作者 Can Kang Shifeng Yan +2 位作者 Haixia Liu Jie Chen Kejin Ding 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2431-2442,共12页
The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surfa... The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mgalloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface.For a certain cavitation number and a given standoff distance, different liquid temperatures were considered.Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphologyof the tested specimens. The results show that the cumulative mass loss increases continuously with the liquidtemperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds.Increasing the temperature promotes the generation of cavitation bubbles. Large erosion pits are induced aftersevere material removal. The microhardness increases with the distance from the target surface. At a liquidtemperature of 50℃, the microhardness fluctuates apparently with increasing the depth of indentation. 展开更多
关键词 Cavitation erosion Al-Mg alloy liquid temperature mass loss surface morphology MICROHARDNESS
下载PDF
Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys
4
作者 Jiang You Cheng Wang +6 位作者 Shun-Li Shang Yipeng Gao Hong Ju Hong Ning Yi Wang Hui-Yuan Wang Zi-Kui Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2006-2017,共12页
It is a long-sought goal to achieve desired mechanical properties through tailoring phase formation in alloys,especially for complicated multi-phase alloys.In fact,unveiling nucleation of competitive crystalline phase... It is a long-sought goal to achieve desired mechanical properties through tailoring phase formation in alloys,especially for complicated multi-phase alloys.In fact,unveiling nucleation of competitive crystalline phases during solidification hinges on the nature of liquid.Here we employ ab initio molecular dynamics simulations(AIMD)to reveal liquid configuration of the Mg-Al-Ca alloys and explore its effect on the transformation of Ca-containing Laves phase from Al2Ca to Mg_(2)Ca with increasing Ca/Al ratio(rCa/Al).There is structural similarity between liquid and crystalline phase in terms of the local arrangement environment,and the connection schemes of polyhedras.The forming signature of Mg_(2)Ca,as hinted by the topological and chemical short-range order originating from liquid,ascends monotonically with increasing rCa/Al.However,Al_(2)Ca crystal-like order increase at first and then decrease at the crossover of rCa/Al=0.74,corresponding to experimental composition of phase transition from Al_(2)Ca to Mg_(2)Ca.The origin of phase transformation across different compositions lies in the dense packing of atomic configurations and preferential bonding of chemical species in both liquid and solid.The present finding provides a feasible scenario for manipulating phase formation to achieve high performance alloys by tailoring the crystal-like order in liquid. 展开更多
关键词 liquid alloy SOLIDIFICATION Crystalembryo Short-rangeorder Ab initio molecular dynamics
下载PDF
Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic(LBE-O)
5
作者 周婷 高星 +4 位作者 马志伟 常海龙 申铁龙 崔明焕 王志光 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期384-395,共12页
Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen disso... Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen dissolved liquid leadbismuth eutectic(LBE-O).Both static and dynamic simulation results indicate that the early stage oxidation and dissolution behaviors of bcc Fe show strong orientation dependence under the liquid LBE environments,which may explain the experimental observations of uneven interface between iron-based materials and liquid LBE.Our investigations show that it is the delicate balance between the oxide growth and metal dissolution that leads to the observed corrosion anisotropy for bcc Fe contacting with liquid LBE-O. 展开更多
关键词 liquid lead-bismuth eutectic(LBE) global neural network(G-NN)potential DISSOLUTION
下载PDF
Development of 3D bicontinuous metal-intermetallic composites through subsequent alloying process after liquid metal dealloying
6
作者 Jee Eun Jang Jihye Seong +1 位作者 Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4274-4281,共8页
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi... This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites. 展开更多
关键词 liquid metal dealloying Subsequent alloying Metal–intermetallic composite 3D bicontinuous structure HARDNESS
下载PDF
Liquid metal in prohibiting polysulfides shuttling in metal sulfides anode for sodium-ion batteries
7
作者 Xiaobo Zheng Xinwei Guan +8 位作者 Xuan Cheng Xiaoning Li Yang Fu Yitong Li Zhi Zheng Weikong Pang Xun Xu Peng Li Tianyi Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期559-567,共9页
Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,s... Metal sulfides are a class of promising anode materials for sodium-ion batteries(SIBs)owing to their high theoretical specific capacity.Nevertheless,the reactant products(polysulfides)could dissolve into electrolyte,shuttle across separator,and react with sodium anode,leading to severe capacity loss and safety concerns.Herein,for the first time,gallium(Ga)-based liquid metal(LM)alloy is incorporated with MoS_(2)nanosheets to work as an anode in SIBs.The electron-rich,ultrahigh electrical conductivity,and self-healing properties of LM endow the heterostructured MoS_(2)-LM with highly improved conductivity and electrode integrity.Moreover,LM is demonstrated to have excellent capability for the adsorption of polysulfides(e.g.,Na_(2)S,Na_(2)S_(6),and S_(8))and subsequent catalytic conversion of Na_(2)S.Consequently,the MoS_(2)-LM electrode exhibits superior ion diffusion kinetics and long cycling performance in SIBs and even in lithium/potassium-ion battery(LIB/PIB)systems,far better than those electrodes with conventional binders(polyvinylidene difluoride(PVDF)and sodium carboxymethyl cellulose(CMC)).This work provides a unique material design concept based on Ga-based liquid metal alloy for metal sulfide anodes in rechargeable battery systems and beyond. 展开更多
关键词 GalnSn liquid metal alloy MoS_(2) Polysulfides shuttle effects Catalytic conversion Sodium-ion batteries
下载PDF
Homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging 被引量:11
8
作者 杜之明 陈刚 +5 位作者 韩飞 曹广祥 柳君 李宏伟 张新 谢水生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2384-2390,共7页
The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the mi... The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading. 展开更多
关键词 HOMOGENIZATION aluminum alloy liquid forging compound loading
下载PDF
Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-AlCl_3 ionic liquids 被引量:6
9
作者 刘奎仁 柳泉 +1 位作者 韩庆 涂赣峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2104-2110,共7页
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo... Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity. 展开更多
关键词 magnesium alloy ELECTRODEPOSITION ionic liquids ALUMINUM CORROSION
下载PDF
Laser surface melting AZ31B magnesium alloy with liquid nitrogen-assisted cooling 被引量:7
10
作者 崔泽琴 施海霞 +1 位作者 王文先 许并社 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1446-1453,共8页
Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid... Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process. 展开更多
关键词 magnesium alloy laser surface melting liquid nitrogen-assisted cooling MICROHARDNESS corrosion resistance
下载PDF
Surface pretreatment of Mg alloys prior to Al electroplating in TMPAC-AlCl_3 ionic liquids 被引量:5
11
作者 柳泉 刘奎仁 +1 位作者 韩庆 涂赣峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2111-2116,共6页
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio... It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating. 展开更多
关键词 magnesium alloys ELECTROPLATING pretreatment procedure ALUMINUM ionic liquids
下载PDF
Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg_7Zn_3 alloy 被引量:3
12
作者 刘让苏 梁永超 +5 位作者 刘海蓉 郑乃超 莫云飞 侯兆阳 周丽丽 彭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1052-1060,共9页
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru... The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be. 展开更多
关键词 liquid Mg-Zn alloy initial melt temperature microstructure evolution molecular dynamics simulation cluster-typeindex method
下载PDF
Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride 被引量:10
13
作者 P.V. Suneesh T.G. Satheesh Babu T. Ramachandran 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第9期909-916,共8页
The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the ... The electrodeposition of A1 and A1-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing A1C13-EtaNHC1 was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). A1 of 70μm in thickness and an A1-Cu alloy of 30μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the A1 deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30±5) and (29±5) nm, respectively, for A1 and A1-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al. 展开更多
关键词 ELECTRODEPOSITION aluminium copper alloys ionic liquids triethylamine hydrochloride copper acetylacetonate
下载PDF
Direct electrodeposition of ionic liquid-based template-free Sn Co alloy nanowires as an anode for Li-ion batteries 被引量:6
14
作者 Le-ping Wang Gang Chen +3 位作者 Qi-xin Shen Guo-min Li Shi-you Guan Bing Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1027-1034,共8页
Sn Co alloy nanowires were successfully electrodeposited from Sn Cl2-Co Cl2-1-ethyl-3-methylimidazolium chloride(EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for S... Sn Co alloy nanowires were successfully electrodeposited from Sn Cl2-Co Cl2-1-ethyl-3-methylimidazolium chloride(EMIC) ionic liquid without a template. The nanowires were obtained from the molar ratio of 5:40:60 for Sn Cl2(25)Co Cl2(25)EMIC at-0.55 V and showed a minimum diameter of about 50 nm and lengths of over 20 μm. The as-fabricated SnCo nanowires were about 70 nm in diameter and featured a Sn/Co weight ratio of 3.85:1, when used as an anode for a Li-ion battery, they presented respective specific capacities of 687 and 678 m Ah·g^(-1) after the first charge and discharge cycle and maintained capacities of about 654 m Ah·g^(-1) after 60 cycles and 539 m Ah·g^(-1) after 80 cycles at a current density of 300 m A·g^(-1). Both the nanowire structure and presence of elemental Co helped buffer large volume changes in the Sn anode during charging and discharging to a certain extent, thereby improving the cycling performance of the Sn anode. 展开更多
关键词 SnCo alloy NANOWIRES template ELECTRODEPOSITION ionic liquid
下载PDF
Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201 被引量:6
15
作者 H.MLLER U.A.CURLE E.P.MASUKU 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期847-851,共5页
The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by first... The surface liquid segregation(SLS) phenomenon in semi-solid metal-high pressure die casting(SSM-HPDC) plates of 7075,2024,6082 and A201 was investigated by different techniques.Depth profiles were determined by firstly measuring the chemical composition of the surface of the plates using a Thermo Quantris optical emission spectrometer(OES).Material was then removed by a grinding process followed by measurement of the amount of material removed and chemical analysis.Chemical profiles of the main alloying elements were plotted for the cross-section of the plates in the as-cast and T6(after solution treatment) temper conditions.Vickers hardness profiles from the surface to the centre of the plates were determined.Metallographic samples of cross-sections of the castings were prepared and evaluated using a scanning electron microscope.The results show that surface liquid segregation in SSM-HPDC alloys causes significant differences in properties between the surface and the bulk of these castings in both the F and T6 temper conditions. 展开更多
关键词 SEMI-SOLID metal(SSM) forming alloy 7075 alloy 2024 alloy 6082 alloy A201 surface liquid SEGREGATION
下载PDF
Effect of Zn/Mg/Cu Additions on Hot Cracking Tendency and Performances of Al-Cu-Mg-Zn Alloys for Liquid Forging 被引量:4
16
作者 孙永根 杜之明 +2 位作者 SU Yanni CHENG Yuansheng LIU Yongwang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期176-182,共7页
During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray... During the process of liquid forging, a host of hot cracking defects were found in the Al-CuMg-Zn aluminum alloy. Therefore, mechanical tests and analyses by optical microscope, scanning electron microscope, and X-ray diffraction were performed to research the influences of zinc, magnesium, and copper(three main alloying elements) on hot cracking tendency and mechanical properties. It was concluded that all the three alloying elements exerted different effects on the performances of newly designed alloys. And the impact of microstructures on properties of alloys was stronger than that of solution strengthening. Among new alloys, Al-5 Cu-4.5 Mg-2.5 Zn alloy shows better properties as follows: σb=327 MPa, δ=2.7%, HB=107 N/mm^2, and HCS=40. 展开更多
关键词 liquid FORGING Al-Cu-Mg-Zn alloys mechanical properties hot CRACKING TENDENCY
下载PDF
Isothermal corrosion Fe_3Si alloy in liquid zinc 被引量:4
17
作者 Wenjun Wang Junping Lin Yanli Wang Guoliang Chen 《Journal of University of Science and Technology Beijing》 CSCD 2007年第1期52-55,共4页
The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in... The isothermal corrosion testing, microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied. The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially. Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc, although aluminum contents in the molten zinc were very low. The phase of reaction product was thought to be Fe2Al5. The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10^-3 mm/h, therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak. 展开更多
关键词 Fe3Si alloy liquid zinc corrosion GALVANIZING INTERMETALLICS
下载PDF
Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints 被引量:2
18
作者 Dong Wu Jun Shen +2 位作者 Meng-bing Zhou Liang Cheng Jia-xing Sang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第10期1169-1176,共8页
A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that t... A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone(SZ) and the heat-affected zone(HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone(TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding(FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time. 展开更多
关键词 MAGNESIUM alloy liquid nitrogen COOLING friction STIR SPOT welding microstructure mechanical property
下载PDF
PREDICTION OF THE MIXING ENTHALPIES OF BINARY LIQUID ALLOYS BY MOLECULAR INTERACTION VOLUME MODEL 被引量:2
19
作者 H.W. Yang D.P. Tao Z.H. Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第5期336-340,共5页
The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted va... The mixing enthalpies of 23 binary liquid alloys are calculated by molecular interaction volume model (MIVM), which is a two-parameter model with the partial molar infinite dilute mixing enthalpies. The predicted values are in agreement with the experimental data and then indicate that the model is reliable and convenient. 展开更多
关键词 Molecular interaction volume model Mixing enthalpy liquid alloys PREDICTION
下载PDF
Investigation of Micro Formability of Bulk Amorphous Alloy in the Supercooled Liquid State Based on Fluid Flow and Finite Element Analysis 被引量:2
20
作者 M. Cheng S.H. Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期277-280,共4页
Research results on the viscous flow deformation behavior of bulk amorphous alloy in different systems are reviewed. The material exhibits an ideal Newtonian fluid at a high temperature. Analytical solution of lamella... Research results on the viscous flow deformation behavior of bulk amorphous alloy in different systems are reviewed. The material exhibits an ideal Newtonian fluid at a high temperature. Analytical solution of lamellar fluid flow behavior is used to discuss the viscous flow behavior of the bulk amorphous alloy in the supercooled liquid state. A material model, which describes such deformation behavior of Mg6oCusoYlo amorphous alloy, is introduced into the finite element method of microformin8 process. Surface feature size was investigated and found not sensitive to the micro formability. Bulk amorphous alloy may possibly be applied to microelectro-mechanical-systems (MEMS) fabrication. 展开更多
关键词 Bulk amorphous alloy Supercooled liquid state Micro formability Lamellar fluid flow
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部