The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me...The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.展开更多
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][...The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.展开更多
Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [ba...Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.展开更多
The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlig...The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid-liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes(ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes(SILMs) and quasi-solidified ionic liquid membranes(QSILMs) according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications.展开更多
The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic ph...The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic phase and film of polyvinylidene difluoride, as hydrophobic polymer support with 100 μm in thickness and 0.45 μm as the diameter of the pores. The macroscopic parameters (P and J0) on the transport of these ions were determined for different medium temperatures. For these different environments, the prepared SLMs were highly permeable and a clear evolution of these parameters was observed. The parameter J0 depended on the temperature according to the Arrhenius equation. The activation parameters, Ea, ΔH≠ and ΔS≠, for the transition state on the reaction of complex formation (ST) , were determined. To explain these results for this phenomenon, and achieve a better extraction of the substrate, a model based on the substrate complexation by the carrier and the diffusion of the formed complex (ST) was developed. The experimental results verify this model and determine the microscopic parameters (Kass and D*). These studies show that these parameters Kass and D* are specific to facilitated transport of Cr(III) ions by each of the carriers and they are changing significantly with temperature.展开更多
In recent years,the liquid membrane process has been widely investigated to remove rare earth metals.However,transport modeling of this process requires the accurate values of several parameters,which are difficult to...In recent years,the liquid membrane process has been widely investigated to remove rare earth metals.However,transport modeling of this process requires the accurate values of several parameters,which are difficult to measure.Thus,the accurate simulation of this process is a challenging task.In this study,the artificial neural network(ANN)based approach is used to model the liquid membrane process for removing dysprosium.Experimental results from a previous study were used to train the ANN.Initially,the number of neurons in the hidden layer was optimized.The minimum mean squared error between experimental results and model predictions is found with ten neurons.Model predictions were successfully validated with experimental results with correlation factor(R)of 0.9987,which confirms the authenticity of the trained network.Trained ANN was then used to study the effects of different operating parameters on transport rate.The higher volume ratio of membrane solution to feed solution(3-4)with 50-60 min of operation,higher feed pH(5),HCl concentration in stripping solution of 2 mol/L,and moderate concentration of carrier species(0.5 mol/L)with 0.5×10^(-4) mol/L dysprosium initial concentration are found to be optimum values of operating conditions for maximizing the transport rate.展开更多
In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simpl...In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.展开更多
Extraction of dioxins from blood samples was carried out by inclusion-facilitated emulsion liquid membrane process. The novelty of this work is the application of nano-baskets of calixarene and emulsion liquid membran...Extraction of dioxins from blood samples was carried out by inclusion-facilitated emulsion liquid membrane process. The novelty of this work is the application of nano-baskets of calixarene and emulsion liquid membranes in the selective and efficient preconcentration of dioxin. For this aim, four derivatives ofp-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including the calixarene's scaffold and concentration(as the carrier/demulsifier), the diluent type in membrane, the phase and the treat ratio, mixing speed, and initial solute concentration. Determinations were followed by a gas chromatograph and the results reveal that under the optimized operating conditions, the preconcentration of dioxins was improved and the method achieved lower limit of detections(LODs). Under optimal conditions, the figures of merits were determined to be LOD 1.0 pg/L, dynamic range 0.6--112.0 pg/L, RSD 5.5%(n=5), and the maximum enrichment factor and recovery were determined to be 3.3 and 99%, respectively.展开更多
The transfer of trivalent europium ion in a liquid surfactant membrane system is investigated in order toclarify the characteristics of liquid membrane separation process and the availability of this technique forreco...The transfer of trivalent europium ion in a liquid surfactant membrane system is investigated in order toclarify the characteristics of liquid membrane separation process and the availability of this technique forrecovering trivalent lanthanides and actinides.A layered structure model for the emulsion globule is sug-gested.The equations describing the relationship among the effective membrane thickness,the time andother factors are derived and verified experimentally.Results show that under certain conditions the decreas-ing concentration of europium ion in the external phase is proportional to the square root of the time,the acidity of the internal phase and the carrier concentration in the membrane phase.The membrane phase consists of kerosene(solvent),Span-80(surfactant)and di-(2-ethylhexyl) phosphoricacid(HDEHP,carrier).The internal phase is dilute nitric acid and the external phase is aqueous solu-tion containing Eu(NO3)3.The mass transfer rate of europium in this system is high and the recovery ofeuropium may be more than 99%.展开更多
Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperature...Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.展开更多
Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numer...Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numerous membranes can dynamically control liquid-phase fluids transport via external stimuli, the transport and separation of gas-phase fluids remains a challenge. Here, we show a temperature-regulation liquid gating membrane that allows in-situ dynamically controllable gas/liquid transfer and multiphase separation by integrating a thermo-wettability responsive porous membrane with functional gating liquid. Experiments and theoretical analysis have demonstrated the temperature-regulation mechanism of this liquid gating system, which is based on thermo-responsive changes of porous membrane surface polarity, leading to changes in affinity between the porous membrane and the gating liquid. In addition, the sandwich configuration with dense Au-coated surfaces and heterogeneous internal components by a bistable interface design enables the liquid gating system to enhance response sensitivity and maintain working stability. This temperature-regulation gas/liquid transfer strategy expands the application range of liquid gating membranes,which are promising in environmental governance, water treatment and multiphase separation.展开更多
Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of C...Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).展开更多
The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedanc...The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.展开更多
The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solutio...The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.展开更多
Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced wit...Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced with NaBH4 to afford the corresponding aza-crown ethers. The liquid membrane transport or alkali cations using the five new macrocycles as the ion-carriers was also studied.展开更多
Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect...Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.展开更多
It is indicated from a study of transport of rare earth ions through the emulsion liquid mem- brane of bis(2,4,4-trimethylpentyl)phosphinic acid-Span 80-toluene that transporting rare earth ions com- pletely and rapid...It is indicated from a study of transport of rare earth ions through the emulsion liquid mem- brane of bis(2,4,4-trimethylpentyl)phosphinic acid-Span 80-toluene that transporting rare earth ions com- pletely and rapidly was realized under the optimum experimental conditions:1.0×10^(-3)~3.0×10^(-3)mol/L bis(2,4,4-trimethylpentyl)phosphinic acid and 2%~4%(W/V)Span 80 in toluene solution as membrane phase,0.50~2.0 mol/L HCl as inner phase,rare earth ion solutions with pH 3.5~5.0 as outer phase.Ac- cording to the differences of transport behavior for rare earth ions,it is possible to separate rare earth ions from mixed solutions of rare earth ions by this liquid membrane system.展开更多
Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for variou...Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected the stability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately. The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.展开更多
The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide, TTAB and alcohol solution)/oil (picric acid in chloroform solution)/water (aqueous glucose solution) system was inv...The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide, TTAB and alcohol solution)/oil (picric acid in chloroform solution)/water (aqueous glucose solution) system was investigated. By using homemade device, the curves of various liquid membranes oscillation with different concentration of TTAB and picric acid, types of alcohol and other organic solvents at different temperature were measured. The results show that the water (aqueous 7 mmol/L of TTAB and 0.5 mol/L of n-propanol solution)/oil (0.5 mmol/L of picric acid in chloroform solution)/water (aqueous glucose solution) system performed sustained and stable oscillation at 30 ℃. And the novel system can recognise added amino acid.展开更多
基金supported by the National Key R&D Program of China ‘Intergovernmental International Scientific and Technological Innovation Cooperation’ (No. 2019YFE0122100)。
文摘The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.
基金Supported by the National Basic Research Program of China(2013CB733501)the National Natural Science Foundation of China(21136004,21176112,21476106,and21428601)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133221110001)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.
基金Supported by the National Natural Science Foundation of China (20776065), the Natural Science Foundation of Jiangsu Province (BK2008023), and the National Found for Fostering Talents of Basic Science 00630425).
文摘Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.
基金supported by the National Natural Science Foundation of China(21406235 and U1407111)the National High Technology Research and Development Program of China(863 Program,2014AA021006)
文摘The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid-liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes(ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes(SILMs) and quasi-solidified ionic liquid membranes(QSILMs) according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications.
基金All authors thank the Agence Universitaire de la Fran-cophonie(AUF)for financial support(PCSI 59113PS 014)Professor Jean-François Verchère from the University of Rouen(France)for his advice,fruitful dis-cussions,strong encouragement and exemplary coopera-tion.
文摘The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic phase and film of polyvinylidene difluoride, as hydrophobic polymer support with 100 μm in thickness and 0.45 μm as the diameter of the pores. The macroscopic parameters (P and J0) on the transport of these ions were determined for different medium temperatures. For these different environments, the prepared SLMs were highly permeable and a clear evolution of these parameters was observed. The parameter J0 depended on the temperature according to the Arrhenius equation. The activation parameters, Ea, ΔH≠ and ΔS≠, for the transition state on the reaction of complex formation (ST) , were determined. To explain these results for this phenomenon, and achieve a better extraction of the substrate, a model based on the substrate complexation by the carrier and the diffusion of the formed complex (ST) was developed. The experimental results verify this model and determine the microscopic parameters (Kass and D*). These studies show that these parameters Kass and D* are specific to facilitated transport of Cr(III) ions by each of the carriers and they are changing significantly with temperature.
文摘In recent years,the liquid membrane process has been widely investigated to remove rare earth metals.However,transport modeling of this process requires the accurate values of several parameters,which are difficult to measure.Thus,the accurate simulation of this process is a challenging task.In this study,the artificial neural network(ANN)based approach is used to model the liquid membrane process for removing dysprosium.Experimental results from a previous study were used to train the ANN.Initially,the number of neurons in the hidden layer was optimized.The minimum mean squared error between experimental results and model predictions is found with ten neurons.Model predictions were successfully validated with experimental results with correlation factor(R)of 0.9987,which confirms the authenticity of the trained network.Trained ANN was then used to study the effects of different operating parameters on transport rate.The higher volume ratio of membrane solution to feed solution(3-4)with 50-60 min of operation,higher feed pH(5),HCl concentration in stripping solution of 2 mol/L,and moderate concentration of carrier species(0.5 mol/L)with 0.5×10^(-4) mol/L dysprosium initial concentration are found to be optimum values of operating conditions for maximizing the transport rate.
文摘In this study,polyvinyl alcohol(PVA)–ionic liquid(IL) membranes were prepared for the separation of isopropyl alcohol(IPA)–water azeotropic mixtures by pervaporation.PVA-IL composite membranes were prepared by simple solvent evaporation method using four ILs,viz.,1-n-butyl-3-methylimidazolium chloride(BMIMCl),1-hexyl-3-methylimidazolium chloride(HMIMCl),1-hexyl-3-methylimidazolium tetra fluoroborate(HMIMBF4) and 1-octyl-3-methylimidazolium chloride(OMIMCl).Three ILs were used to study the effect of alkyl chain on the pervaporation performance.The study had focused on the effect feed water concentration from 10%–40%and effect of feed temperature from 50–80°C.Physiochemical properties of all the membranes were studied using Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and contact angle measurement.The Arrhenius activation energies for permeation were estimated to be in the range 4–12 kJ·mol-1 from the temperature dependent permeation values.
文摘Extraction of dioxins from blood samples was carried out by inclusion-facilitated emulsion liquid membrane process. The novelty of this work is the application of nano-baskets of calixarene and emulsion liquid membranes in the selective and efficient preconcentration of dioxin. For this aim, four derivatives ofp-tert-calix[4]arene bearing different sulfonamide moieties were synthesized and their inclusion-extraction parameters were optimized including the calixarene's scaffold and concentration(as the carrier/demulsifier), the diluent type in membrane, the phase and the treat ratio, mixing speed, and initial solute concentration. Determinations were followed by a gas chromatograph and the results reveal that under the optimized operating conditions, the preconcentration of dioxins was improved and the method achieved lower limit of detections(LODs). Under optimal conditions, the figures of merits were determined to be LOD 1.0 pg/L, dynamic range 0.6--112.0 pg/L, RSD 5.5%(n=5), and the maximum enrichment factor and recovery were determined to be 3.3 and 99%, respectively.
文摘The transfer of trivalent europium ion in a liquid surfactant membrane system is investigated in order toclarify the characteristics of liquid membrane separation process and the availability of this technique forrecovering trivalent lanthanides and actinides.A layered structure model for the emulsion globule is sug-gested.The equations describing the relationship among the effective membrane thickness,the time andother factors are derived and verified experimentally.Results show that under certain conditions the decreas-ing concentration of europium ion in the external phase is proportional to the square root of the time,the acidity of the internal phase and the carrier concentration in the membrane phase.The membrane phase consists of kerosene(solvent),Span-80(surfactant)and di-(2-ethylhexyl) phosphoricacid(HDEHP,carrier).The internal phase is dilute nitric acid and the external phase is aqueous solu-tion containing Eu(NO3)3.The mass transfer rate of europium in this system is high and the recovery ofeuropium may be more than 99%.
文摘Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.
基金supported by the National Natural Science Foundation of China (52025132, 21621091, 22021001, 22121001, 22275207 and T2241022)the National Science Foundation of Fujian Province of China (2022J02059)+3 种基金the State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (KFKT202221)the 111 Project (B17027, B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (RD2022070601)the Tencent Foundation (The XPLORER PRIZE)。
文摘Membrane separation technology with the ability to regulate gas/liquid transport and separation is critical for environmental fields, such as sewerage treatment, multiphase separation, and desalination. Although numerous membranes can dynamically control liquid-phase fluids transport via external stimuli, the transport and separation of gas-phase fluids remains a challenge. Here, we show a temperature-regulation liquid gating membrane that allows in-situ dynamically controllable gas/liquid transfer and multiphase separation by integrating a thermo-wettability responsive porous membrane with functional gating liquid. Experiments and theoretical analysis have demonstrated the temperature-regulation mechanism of this liquid gating system, which is based on thermo-responsive changes of porous membrane surface polarity, leading to changes in affinity between the porous membrane and the gating liquid. In addition, the sandwich configuration with dense Au-coated surfaces and heterogeneous internal components by a bistable interface design enables the liquid gating system to enhance response sensitivity and maintain working stability. This temperature-regulation gas/liquid transfer strategy expands the application range of liquid gating membranes,which are promising in environmental governance, water treatment and multiphase separation.
文摘Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).
基金Supported by the National Natural Science Foundation of China (20676023).
文摘The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.
基金Supported by the National Natural Science Foundation of China(90401009) the Foundation for Planning Project of West Action of Chinese Academy of Sciences(KZCX2-XB2-13) the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology(602-210805)
文摘The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.
基金We are gr ateful to the Natural Sc ience Foundation of Shandong Province for financial support ofthiswork (Q97B03123).
文摘Five new aza-crown ethers have been prepared by the condensation of 2,6-bis[(2-formylphenyl)oxymethyl] pyridine with different diamino compounds in hot methanol, the bis-Schiff bases without isolation were reduced with NaBH4 to afford the corresponding aza-crown ethers. The liquid membrane transport or alkali cations using the five new macrocycles as the ion-carriers was also studied.
基金Supported by the National Natural Science Foundation of China (20676023)
文摘Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.
基金Supported by the National Natural Science Foundation of China
文摘It is indicated from a study of transport of rare earth ions through the emulsion liquid mem- brane of bis(2,4,4-trimethylpentyl)phosphinic acid-Span 80-toluene that transporting rare earth ions com- pletely and rapidly was realized under the optimum experimental conditions:1.0×10^(-3)~3.0×10^(-3)mol/L bis(2,4,4-trimethylpentyl)phosphinic acid and 2%~4%(W/V)Span 80 in toluene solution as membrane phase,0.50~2.0 mol/L HCl as inner phase,rare earth ion solutions with pH 3.5~5.0 as outer phase.Ac- cording to the differences of transport behavior for rare earth ions,it is possible to separate rare earth ions from mixed solutions of rare earth ions by this liquid membrane system.
基金the National Natural Science Foundation of China (No. 29136130).
文摘Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected the stability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately. The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.
文摘The liquid membrane oscillation of a novel water (aqueous tetradecyl trimethyl ammoniumbromide, TTAB and alcohol solution)/oil (picric acid in chloroform solution)/water (aqueous glucose solution) system was investigated. By using homemade device, the curves of various liquid membranes oscillation with different concentration of TTAB and picric acid, types of alcohol and other organic solvents at different temperature were measured. The results show that the water (aqueous 7 mmol/L of TTAB and 0.5 mol/L of n-propanol solution)/oil (0.5 mmol/L of picric acid in chloroform solution)/water (aqueous glucose solution) system performed sustained and stable oscillation at 30 ℃. And the novel system can recognise added amino acid.