n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm were successfully grown by one-step liquid phase epitaxy (LPE) tech-nology. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD...n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm were successfully grown by one-step liquid phase epitaxy (LPE) tech-nology. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns showed the mirror smooth surface, flat interface, and good crystalline quality of the heterojunctions. Fourier transform infrared (FTIR) transmittance spectra exhibited that the cutoff wave-lengths of InAsSb epilayers reach 4.8 μm. The standard current-voltage (I-V) characteristics with a high differential-resistance-area-product at zero bias (R0A) of 1.02×10-1 Ωcm2 at room temperature indicate that the fine p-n junctions have been obtained.展开更多
基金the National Natural Science Foundation of China(No.60777022)
文摘n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm were successfully grown by one-step liquid phase epitaxy (LPE) tech-nology. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns showed the mirror smooth surface, flat interface, and good crystalline quality of the heterojunctions. Fourier transform infrared (FTIR) transmittance spectra exhibited that the cutoff wave-lengths of InAsSb epilayers reach 4.8 μm. The standard current-voltage (I-V) characteristics with a high differential-resistance-area-product at zero bias (R0A) of 1.02×10-1 Ωcm2 at room temperature indicate that the fine p-n junctions have been obtained.