期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
1
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Effect of ECAP process on liquid distribution of AZ80M alloy during semi-solid isothermal heat treatment 被引量:8
2
作者 Ling-ling FAN Ming-yang ZHOU +2 位作者 Yang-yang GUO Yu-wen-xi ZHANG Gao-feng QUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1599-1611,共13页
Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The micro... Two kinds of semi-solid samples of AZ80−0.2Y−0.15Ca(wt.%)(AZ80M)magnesium alloy were prepared by semi-solid isothermal heat treatment of materials with and without equal channel angular pressing(ECAP)process.The microstructures of initial and semi-solid treated samples were compared and analyzed.The results showed a significant difference in the liquid phase distribution between three-pass ECAP processed(3P)and as-received samples during the isothermal heating process.The semi-solid 3P sample showed a more uniform liquid distribution due to its smaller dihedral angle.Besides,the coarsening processes of solid grains of as-received and 3P samples were dominated by the coalescence and Ostwald ripening mechanism,respectively.The difference of coarsening processes was mainly related to the proportion of the high-angle grain boundaries in materials,which further affected the evolution behavior of the liquid pools. 展开更多
关键词 AZ80M equal channel angular pressing semi-solid microstructure liquid phase distribution coarsening mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部