An approach to seismic response reduction for offshore platforms by the use of the tuned liquid damper is presented in this paper. First of all, the effects of the tuned frequency ratio and excited frequency ratio on ...An approach to seismic response reduction for offshore platforms by the use of the tuned liquid damper is presented in this paper. First of all, the effects of the tuned frequency ratio and excited frequency ratio on the seismic response reduction of the platform structure are investigated. Based on the results, a mechanical model and equation of motion for the TLD-platform system are established. And then effectiveness of the appraoch is verified by numerical calculation.展开更多
The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImB...The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.展开更多
Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on...Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
Using ABAQUS FEM software,the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC),the change of liquid core before slab solidification comp...Using ABAQUS FEM software,the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC),the change of liquid core before slab solidification completely on soft re- duction process is studied,the analyse result shows the soft reduction technique can change the liquid core size,which is useful to cylinder slab forming in CC.展开更多
Thin-slab continuous casting and rolling technology is a process integrating casting and plastic deformation. In this study,targeting actions such as slab deformation and liquid core flows during the process of liquid...Thin-slab continuous casting and rolling technology is a process integrating casting and plastic deformation. In this study,targeting actions such as slab deformation and liquid core flows during the process of liquid core reduction on thin-slab continuous casting, suggests the fluid-solid coupling method should be used to research the characteristic and patterns of slab deformation during the liquid core reduction process, as well as research liquid core backflows. A material model of the slab shell was obtained through the high-temperature compression test of the cast steel. The analysis of the fluid-solid coupling simulation for liquid core reduction shows that slab deformation concentrates on the narrow side due to the existence of the liquid core. Meanwhile,the stress and strain increases with the increase of the reduction rate and slab thickness. The changing trends of stress and strain are identical under various conditions. The results demonstrate that using greater reduction at the upper part of the slab, which has a higher temperature and thinner slab,is beneficial to the quality of the slab. Moreover,the liquid core is extruded as the reduction is implemented. The quantity of the extrusion increases with the increase of reduction rate and the thickness of thinner shell, which leads to fluctuation of the mould level, making the operation more difficult.展开更多
A novel chemical liquid reduction process was employed to prepare nanosized Mo-Cu powders. The precipitates were first obtained by adding ammonium heptamolybdate ((NH4)6Mo7024·4H2O) solution into excess hydra...A novel chemical liquid reduction process was employed to prepare nanosized Mo-Cu powders. The precipitates were first obtained by adding ammonium heptamolybdate ((NH4)6Mo7024·4H2O) solution into excess hydrazine hydrate solution, and then mixed the copper chloride solution. The precipitates were subsequently washed, dried, followed by reducing in H2 atmosphere to convert into Mo-Cu composite powders. The composition, morphology and particle size of the Mo-Cu composite powders were characterized by the XRD, SEM and TEM. The effects of the chemical reaction temperature and the magnetic stirring on the morphology of the Mo-Cu powders were also studied. The results show that Mo-Cu powders produced by the chemical liquid reduction process are nearly spherical shape and dispersive distribution state, with particle size ranging from 50 to 100 nm. The chemical reaction temperature and magnetic stirring will change the particle feature of the powders. Because of the Cu3M0209, the reduction process in H2 is the one-stage reduction from the precipitates to the Mo-Cu composite powders.展开更多
A two-dimensional model was applied to simulate the liquid core reduction (LCR) technology of bloom CC using ANSYS software. The deformation characteristics of bloom under different liquid fraction and reducing amount...A two-dimensional model was applied to simulate the liquid core reduction (LCR) technology of bloom CC using ANSYS software. The deformation characteristics of bloom under different liquid fraction and reducing amount are obtained. The results indicate that the main deformation condition of bloom shell is compressive strain, mainly undertaken by the liquid core, which increases with the enhancement of reducing amount. Solidified shell takes minor deformation. The longitudinal section of bloom appears sunken and the narrow side bulges, which grow serious when the liquid fraction increases.展开更多
Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and...Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and UV-Vis measurement of the solution. Furthermore, the reduced MB was oxidized again by standing the solution under the conditions of light shielding at 50?C. The fluorescence spectra of the solution excited at 350 nm suggested that the photo-induced reduction probably took place via electron-transfer from BMIMCl to MB.展开更多
Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies ope...Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition.展开更多
Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application o...Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.展开更多
A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in...A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure.展开更多
Asymmetric reductive amination of carbonyl compounds was carried out using a novel class of aliphatic quarternary ammonium based chiral ionic liquid. S-(+)-2,3-dihydroxy-N,N,N-tributylpropanaminum bromide chiral ionic...Asymmetric reductive amination of carbonyl compounds was carried out using a novel class of aliphatic quarternary ammonium based chiral ionic liquid. S-(+)-2,3-dihydroxy-N,N,N-tributylpropanaminum bromide chiral ionic liquid has been synthesized, characterized and used for asymmetric reductive amination of carbonyl compounds in the presence of sodium borohydride. These preliminary results are encouraging and advocate dual role of novel ionic liquid as a medium and reducing agent for proficient conversion of ketones to amines, however, reductive amination reaction needs to be established for other substituents.展开更多
High active and cost‐effective electrocatalysts for the oxygen reduction reaction(ORR)are essential components of renewable energy technologies,such as fuel cells and metal/air batteries.Herein,we propose that ORR ac...High active and cost‐effective electrocatalysts for the oxygen reduction reaction(ORR)are essential components of renewable energy technologies,such as fuel cells and metal/air batteries.Herein,we propose that ORR active Cu/graphitic carbon nitride(Cu/g‐CN)electrocatalyst can be prepared via a facile hydrothermal reaction in the present of the ionic liquid(IL)bis(1‐hexadecyl‐3‐methylimidazolium)tetrachlorocuprate[(C16mim)2CuCl4]and protonated g‐CN.The as‐prepared Cu/g‐CN showed an impressive ORR catalytic activity that a99mV positive shift of the onset potential and2times kinetic current density can be clearly observed,comparing with the pure g‐CN.In addition,the Cu/g‐CN revealed better stability and methanol tolerance than commercial Pt/C(HiSPECTM3000,20%).Therefore,the proposed Cu/g‐CN,as the inexpensive and efficient ORR electrocatalyst,would be a potential candidate for application in fuel cells.展开更多
The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,...The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.展开更多
For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techni...For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.展开更多
Ammonia (NH_(3)) plays a key role in the agricultural fertilizer and commodity chemical industries and is useful for exploring hydrogen storage carriers.The electrochemical nitrogen reduction reaction (NRR) is receivi...Ammonia (NH_(3)) plays a key role in the agricultural fertilizer and commodity chemical industries and is useful for exploring hydrogen storage carriers.The electrochemical nitrogen reduction reaction (NRR) is receiving attention as an environmentally sustainable NH_(3) synthesis replacement for the traditional Haber–Bosch process owing to its near ambient reaction conditions (<100℃ and 1 atm).However,its NH_(3) yield and faradaic efficiency are extremely low because of the sluggish kinetics of N≡N bond dissociation and the hindrance from competitive hydrogen evolution.To overcome these challenges,we herein introduce a dual-functionalized ionic liquid (1-(4-hydroxybutyl)-3-methylimidazolium hydroxide[HOBIM]OH) for a highly dispersed ruthenium oxide electrocatalyst to achieve a biased NRR.The observed uniform distribution of RuO_(2) on the carbon fiber and increase in the surface area for N_(2) adsorption by limiting proton access can be attributed to the presence of imidazolium ions.Moreover,extensive N_(2) adsorption contributes to enhanced NRR selectivity with an NH_(3) yield of 3.0×10^(-10)mol cm^(-2)s^(-1)(91.8μg h^(-1)mg^(-1)) and a faradaic efficiency of 2.2%at-0.20 V_(RHE).We expect our observations to provide new insights into the design of effective electrode structures for electrochemical NH;synthesis.展开更多
Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a...Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a hydrophobic ionic liquid(IL,i.e.,[BMIM][NTF2])to boost the performance of a nitrogen coordinated single atom cobalt catalyst(i.e.),cobalt phthalocyanine(CoPc)supported on carbon nanotubes(CNTs).We find a strong correlation between the ORR performance of CoPc/CNT and the thickness of its IL coatings.Detailed characterization revealed that a higher O_(2)solubility(2.12×10^(−3)mol/L)in the IL compared to aqueous electrolytes provides a local O2 enriched surface layer near active catalytic sites,enhancing the ORR thermodynamics.Further,the hydrophobic IL can efficiently repel the as‐synthesized H_(2)O_(2)molecules from the catalyst surface,preventing their fast decomposition to H_(2)O,resulting in improved H_(2)O_(2)selectivity.Compared to CoPc/CNT without IL coatings,the catalyst with an optimal~8 nm IL coating can deliver a nearly 4 times higher mass specific kinetic current density and 12.5%higher H2O2 selectivity up to 92%.In a two‐electrode electrolyzer test,the optimal catalyst exhibits an enhanced productivity of 3.71 molH2O2 gcat^(–1)h^(–1),and robust stability.This IL‐based interfacial engineering strategy may also be extended to many other electrochemical reactions by carefully tailoring the thickness and hydrophobicity of IL coatings.展开更多
To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising no...To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.展开更多
This paper studied the changing principles of carbon content in direct reduction iron (DRI) and liquid iron in the COREX melting gasifier. Under the normal working conditions of experimental equipment, liquid nitrogen...This paper studied the changing principles of carbon content in direct reduction iron (DRI) and liquid iron in the COREX melting gasifier. Under the normal working conditions of experimental equipment, liquid nitrogen was poured into the melting gasifier from its tuyere to cool down quickly. And then seven cross sections were made to study the carburization reaction and its characteristics of the solid iron and the liquid iron, and also the reaction of carbon between the slag and the metal. According to the results, the influences of the thickness of the semi-coke layer and the temperature on the carbon content of liquid iron in the COREX melting gasifier were confirmed.展开更多
文摘An approach to seismic response reduction for offshore platforms by the use of the tuned liquid damper is presented in this paper. First of all, the effects of the tuned frequency ratio and excited frequency ratio on the seismic response reduction of the platform structure are investigated. Based on the results, a mechanical model and equation of motion for the TLD-platform system are established. And then effectiveness of the appraoch is verified by numerical calculation.
文摘The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.
基金supported by the Key Science and Technology Program of Shanxi Province,China (MD2014-10)the National Key Technology Re-search and Development Program (2013BAC11B00)the National Natural Science Foundation of China (21343012)~~
文摘Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金Funded by Ph.D Researcher Foundation of Wuhan University of Technology(No.471-38300869),China.
文摘Using ABAQUS FEM software,the Elastic-plastic with isotropic hardening model is applied to simulate 3D cylinder slab rolling forming in continuous casting (CC),the change of liquid core before slab solidification completely on soft re- duction process is studied,the analyse result shows the soft reduction technique can change the liquid core size,which is useful to cylinder slab forming in CC.
文摘Thin-slab continuous casting and rolling technology is a process integrating casting and plastic deformation. In this study,targeting actions such as slab deformation and liquid core flows during the process of liquid core reduction on thin-slab continuous casting, suggests the fluid-solid coupling method should be used to research the characteristic and patterns of slab deformation during the liquid core reduction process, as well as research liquid core backflows. A material model of the slab shell was obtained through the high-temperature compression test of the cast steel. The analysis of the fluid-solid coupling simulation for liquid core reduction shows that slab deformation concentrates on the narrow side due to the existence of the liquid core. Meanwhile,the stress and strain increases with the increase of the reduction rate and slab thickness. The changing trends of stress and strain are identical under various conditions. The results demonstrate that using greater reduction at the upper part of the slab, which has a higher temperature and thinner slab,is beneficial to the quality of the slab. Moreover,the liquid core is extruded as the reduction is implemented. The quantity of the extrusion increases with the increase of reduction rate and the thickness of thinner shell, which leads to fluctuation of the mould level, making the operation more difficult.
基金Project(51274246) supported by the National Natural Science Foundation of China
文摘A novel chemical liquid reduction process was employed to prepare nanosized Mo-Cu powders. The precipitates were first obtained by adding ammonium heptamolybdate ((NH4)6Mo7024·4H2O) solution into excess hydrazine hydrate solution, and then mixed the copper chloride solution. The precipitates were subsequently washed, dried, followed by reducing in H2 atmosphere to convert into Mo-Cu composite powders. The composition, morphology and particle size of the Mo-Cu composite powders were characterized by the XRD, SEM and TEM. The effects of the chemical reaction temperature and the magnetic stirring on the morphology of the Mo-Cu powders were also studied. The results show that Mo-Cu powders produced by the chemical liquid reduction process are nearly spherical shape and dispersive distribution state, with particle size ranging from 50 to 100 nm. The chemical reaction temperature and magnetic stirring will change the particle feature of the powders. Because of the Cu3M0209, the reduction process in H2 is the one-stage reduction from the precipitates to the Mo-Cu composite powders.
文摘A two-dimensional model was applied to simulate the liquid core reduction (LCR) technology of bloom CC using ANSYS software. The deformation characteristics of bloom under different liquid fraction and reducing amount are obtained. The results indicate that the main deformation condition of bloom shell is compressive strain, mainly undertaken by the liquid core, which increases with the enhancement of reducing amount. Solidified shell takes minor deformation. The longitudinal section of bloom appears sunken and the narrow side bulges, which grow serious when the liquid fraction increases.
文摘Reduction of methylene blue (MB) occurred by photo irradiation at 280 - 370 nm wavelengths to a solution of MB in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), which was confirmed by color change and UV-Vis measurement of the solution. Furthermore, the reduced MB was oxidized again by standing the solution under the conditions of light shielding at 50?C. The fluorescence spectra of the solution excited at 350 nm suggested that the photo-induced reduction probably took place via electron-transfer from BMIMCl to MB.
基金funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (Grant No. 681719)the German Research Foundation (Grant No.GSC1070) for financial support。
文摘Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition.
基金National Natural Science Foundation of China(No.20336010)National Basic Research Programme of China(No.2003CB716008)
文摘Ionic liquids(ILs) are attracting much attention in various fields of chemical synthesis, electrochemical applications, liquid-liquid extractions, as well as biotransformations. Among those fields, the application of ILs as the potential green solvent for a wide variety of synthetic processes is an area of intense researches. High yield, high selectivity, and good catalytic charac-teristics have usually been achieved. After the isolation of products, ILs can usually be recovered and recycled many times by simple treating procedures, such as, filtration, extraction, and dryness.
基金Cultivation Fund of the Key Grant Scientifi c and Technical Innovation Project, Ministry of Education of China Under Grant No.704003
文摘A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure.
文摘Asymmetric reductive amination of carbonyl compounds was carried out using a novel class of aliphatic quarternary ammonium based chiral ionic liquid. S-(+)-2,3-dihydroxy-N,N,N-tributylpropanaminum bromide chiral ionic liquid has been synthesized, characterized and used for asymmetric reductive amination of carbonyl compounds in the presence of sodium borohydride. These preliminary results are encouraging and advocate dual role of novel ionic liquid as a medium and reducing agent for proficient conversion of ketones to amines, however, reductive amination reaction needs to be established for other substituents.
基金supported by the Australian Research Council Discovery Project(DP150101717)~~
文摘High active and cost‐effective electrocatalysts for the oxygen reduction reaction(ORR)are essential components of renewable energy technologies,such as fuel cells and metal/air batteries.Herein,we propose that ORR active Cu/graphitic carbon nitride(Cu/g‐CN)electrocatalyst can be prepared via a facile hydrothermal reaction in the present of the ionic liquid(IL)bis(1‐hexadecyl‐3‐methylimidazolium)tetrachlorocuprate[(C16mim)2CuCl4]and protonated g‐CN.The as‐prepared Cu/g‐CN showed an impressive ORR catalytic activity that a99mV positive shift of the onset potential and2times kinetic current density can be clearly observed,comparing with the pure g‐CN.In addition,the Cu/g‐CN revealed better stability and methanol tolerance than commercial Pt/C(HiSPECTM3000,20%).Therefore,the proposed Cu/g‐CN,as the inexpensive and efficient ORR electrocatalyst,would be a potential candidate for application in fuel cells.
基金supported by the Climate Change Response Project(NRF-2019M1A2A2065612)the Basic Science Grant(NRF2019R1A4A1029237)+2 种基金the Korea-China Key Joint Research Program(2017K2A9A2A11070341)funded by the Ministry of Science and ICT,and by the 2019 Research Fund(1.190013.01)of UNISTsupport from‘‘Carbon to X Project”(Project No.2020M3H7A1098231)through the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea。
文摘The solar energy-driven electrochemical CO_(2)reduction to value-added fuels or chemicals is considered as an attractive path to store renewable energy in the form of chemical energy to close the carbon cycle.However,CO_(2)reduction suffers from a number of challenges including slow reaction rates,low selectivity,and low energy conversion efficiency.Recently,innovative strategies have been developed to mitigate this challenges.Especially the development of flow cell reactors with a gas diffusion electrode,ionic liquid electrolytes,and new electrocatalysts have dramatically improved the reaction rates and selectivity to desired products.In this perspective,we highlight the key recent developments and challenges in PVpowered electrochemical CO_(2)reduction and propose effective strategies to improve the reaction kinetics,to minimize the electrical energy losses,and to tune the selectivity of the catalysts for desired products,and then suggest future direction of research and development.
基金Supported by National Natural Science Foundation of China(Grant No.51176082)Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions of China(Grant No.CIT&TCD20140311)Beijing Municipal Natural Science Foundation of China(Grant No.SQKZ201510016004)
文摘For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.
基金supported by the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021K1A4A8A01079455)。
文摘Ammonia (NH_(3)) plays a key role in the agricultural fertilizer and commodity chemical industries and is useful for exploring hydrogen storage carriers.The electrochemical nitrogen reduction reaction (NRR) is receiving attention as an environmentally sustainable NH_(3) synthesis replacement for the traditional Haber–Bosch process owing to its near ambient reaction conditions (<100℃ and 1 atm).However,its NH_(3) yield and faradaic efficiency are extremely low because of the sluggish kinetics of N≡N bond dissociation and the hindrance from competitive hydrogen evolution.To overcome these challenges,we herein introduce a dual-functionalized ionic liquid (1-(4-hydroxybutyl)-3-methylimidazolium hydroxide[HOBIM]OH) for a highly dispersed ruthenium oxide electrocatalyst to achieve a biased NRR.The observed uniform distribution of RuO_(2) on the carbon fiber and increase in the surface area for N_(2) adsorption by limiting proton access can be attributed to the presence of imidazolium ions.Moreover,extensive N_(2) adsorption contributes to enhanced NRR selectivity with an NH_(3) yield of 3.0×10^(-10)mol cm^(-2)s^(-1)(91.8μg h^(-1)mg^(-1)) and a faradaic efficiency of 2.2%at-0.20 V_(RHE).We expect our observations to provide new insights into the design of effective electrode structures for electrochemical NH;synthesis.
文摘Efficient and selective oxygen reduction reaction(ORR)electrocatalysts are critical to realizing decentralized H_(2)O_(2)production and utilization.Here we demonstrate a facile interfacial engineering strategy using a hydrophobic ionic liquid(IL,i.e.,[BMIM][NTF2])to boost the performance of a nitrogen coordinated single atom cobalt catalyst(i.e.),cobalt phthalocyanine(CoPc)supported on carbon nanotubes(CNTs).We find a strong correlation between the ORR performance of CoPc/CNT and the thickness of its IL coatings.Detailed characterization revealed that a higher O_(2)solubility(2.12×10^(−3)mol/L)in the IL compared to aqueous electrolytes provides a local O2 enriched surface layer near active catalytic sites,enhancing the ORR thermodynamics.Further,the hydrophobic IL can efficiently repel the as‐synthesized H_(2)O_(2)molecules from the catalyst surface,preventing their fast decomposition to H_(2)O,resulting in improved H_(2)O_(2)selectivity.Compared to CoPc/CNT without IL coatings,the catalyst with an optimal~8 nm IL coating can deliver a nearly 4 times higher mass specific kinetic current density and 12.5%higher H2O2 selectivity up to 92%.In a two‐electrode electrolyzer test,the optimal catalyst exhibits an enhanced productivity of 3.71 molH2O2 gcat^(–1)h^(–1),and robust stability.This IL‐based interfacial engineering strategy may also be extended to many other electrochemical reactions by carefully tailoring the thickness and hydrophobicity of IL coatings.
文摘To replace precious metal oxygen reduction reaction(ORR)electrocatalysts,many transition metals and N-doped car-bon composites have been proposed in the last decade resulting in their rapid development as promising non-precious metal catalysts.We used Ketjenblack carbon as the precursor and mixed it with a polymeric ionic liquid(PIL)of[Hvim]NO_(3) and Fe(NO_(3))_(3),which was thermally calcined at 900℃ to produce a porous FeO_(x),N co-doped carbon material denoted FeO_(x)-N/C.Because the PIL of[Hvim]NO_(3) strongly combines with and disperses Fe^(3+)ions,and NO_(3)−is thermally pyrolyzed to form the porous structure,the FeO_(x)-N/C catalyst has a high electrocatalytic activity for the ORR in both 0.1 mol L^(−1) KOH and 0.5 mol L^(−1) H_(2)SO_(4) electrolytes.It was used as the catalyst to assemble a zinc-air battery,which had a peak power density of 185 mW·cm^(−2).Its superior electrocatalytic activity,wide pH range,and easy preparation make FeO_(x)-N/C a promising electrocatalyst for fuel cells and metal-air batteries.
文摘This paper studied the changing principles of carbon content in direct reduction iron (DRI) and liquid iron in the COREX melting gasifier. Under the normal working conditions of experimental equipment, liquid nitrogen was poured into the melting gasifier from its tuyere to cool down quickly. And then seven cross sections were made to study the carburization reaction and its characteristics of the solid iron and the liquid iron, and also the reaction of carbon between the slag and the metal. According to the results, the influences of the thickness of the semi-coke layer and the temperature on the carbon content of liquid iron in the COREX melting gasifier were confirmed.