期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dynamic interaction between clustered liquid propellant rocket engines under their asynchronous start-ups
1
作者 Sergey I.Dolgopolov Olexiy D.Nikolayev Nataliia V.Khoriak 《Propulsion and Power Research》 SCIE 2021年第4期347-359,共13页
A nonlinear mathematical model of the low-frequency dynamics of the clustered multi-engine rocket propulsion system has been developed and the computations of the engine transient processes during the start-ups of the... A nonlinear mathematical model of the low-frequency dynamics of the clustered multi-engine rocket propulsion system has been developed and the computations of the engine transient processes during the start-ups of the four-engine propulsion system with a shared feed system have been made applied.Based on propulsion system start-up modeling the influence of the connectivity of engines in a cluster on the starting characteristics of individual engines is shown.In particular,an advanced nonlinear mathematical model of the pump cavitation phenomena is a distinctive feature of the mathematical model.The computation results showed that the asynchronous engines start-ups during rocket lift-off lead to severely nonlinear engine transients and clustered engine thrust misbalance.The influence of the rocket engines asynchronous start-ups on the clustered feed system transients depends on many factors,mainly on from the clustered feed system low-frequency dynamics,the magnitude of the disturbance and the phase difference between disturbances acting on different branches of the feed system.The deep lingering dips in the flow rate and pressure transients are possible due to the nonlinear dynamic interaction of the engines.In case of great pressure dips at the pump inlet(up to the pressure of saturated vapors during significant periods of start-up time)the cavitation breakdowns of the pumps of one or more engines from the cluster are possible.This can disrupt the operation of the entire propulsion system and leads to the failure of the launch vehicle mission. 展开更多
关键词 liquid propellant rocket engine Clustered engine thrust misbalance Nonlinear mathematical model Start-up transient Pump cavitation model Low-frequency processes Start-up sequence Shared feed system
原文传递
空化诱导轮内流动不稳定性的最大似然估
2
作者 Luca d'Agostino 《风机技术》 2020年第6期7-17,共11页
The article illustrates the application of Bayesian estimation to the identification of flow instabilities,with special reference to rotating cavitation,in a three-bladed axial inducer using the unsteady pressure read... The article illustrates the application of Bayesian estimation to the identification of flow instabilities,with special reference to rotating cavitation,in a three-bladed axial inducer using the unsteady pressure readings of a single transducer mounted on the casing just behind the leading edges of the impeller blades.The typical trapezoidal pressure distribution in the blade channels is parametrized and modulated in time and space for theoretically reproducing the expected pressure generated by known forms of cavitation instabilities(cavitation auto-oscillations and higher-order surge cavitation modes,n-lobed subsynchronous/synchronous/super-synchronous rotating cavitation).The Fourier spectra of the theoretical pressure so obtained in the rotating frame are transformed in the stationary frame,frequency broadened to better approximate the experimental results,and parametrically fitted by maximum likelihood estimation to the measured auto-correlation spectra.Each form of instability generates a characteristic distribution of sidebands in addition to its fundamental frequency.The identification makes use of this information for effective detection and characterization of multiple simultaneous flow instabilities with intensities spanning over about 20 db down to about 4 db signal-to-noise ratios.The same information also allows for effectively bypassing the aliasing limitations of traditional cross-correlation methods in the discrimination of multiple-lobed azimuthal instabilities from the measurements returned by arrays of equally spaced sensors.The method returns both the estimates of the model parameters and their standard deviations,providing the information needed for the assessment of the statistical significance of the results.The proposed approach represents therefore a promising tool for experimental research on flow instabilities in high-performance turbopumps. 展开更多
关键词 rocket Propulsion liquid propellant rocket engines TURBOMACHINERY Turbopumps Turbopump Cavitation Instabilities Parametric Identification
下载PDF
Chebyshev super spectral viscosity method for water hammer analysis 被引量:2
3
作者 Hongyu Chen Hongjun Liu +1 位作者 Jianhua Chen Lingjiu Wu 《Propulsion and Power Research》 SCIE 2013年第3期201-207,共7页
In this paper,a new fast and efficient algorithm,Chebyshev super spectral viscosity(SSV)method,is introduced to solve the water hammer equations.Compared with standard spectral method,the method's advantage essent... In this paper,a new fast and efficient algorithm,Chebyshev super spectral viscosity(SSV)method,is introduced to solve the water hammer equations.Compared with standard spectral method,the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution.It can stabilize the numerical oscillation(Gibbs phenomenon)and improve the computational efficiency while discontinuities appear in the solution.Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations.It shows that this new numerical method offers an altemative way to investigate the behavior of the water hammer in propellant pipelines. 展开更多
关键词 liquid propellant rocket engine(LPRE) propellant transfer Water hammer Spectral method Super spectral viscosity(SSV) Numerical simulation
原文传递
Numerical investigation of low cycle fatigue life for channel wall nozzles 被引量:1
4
作者 CHENG Cheng WANG Yibai +1 位作者 LIU Yu LIN Qingguo 《航空动力学报》 EI CAS CSCD 北大核心 2018年第7期1553-1565,共13页
The thermal-structural response and low cycle fatigue life of a three-dimensional(3D)channel wall nozzle with regenerative cooling were numerically investigated by coupling the finite volume fluid-thermal method,nonli... The thermal-structural response and low cycle fatigue life of a three-dimensional(3D)channel wall nozzle with regenerative cooling were numerically investigated by coupling the finite volume fluid-thermal method,nonlinear finite element thermal-structural analysis and local strain methods.The nozzle had a high area ratio(nozzle exit area divided by throat area)under cyclic working loads.Parametric studies were carried out to evaluate the effects of channel structural parameters such as channel width,channel height,liner thickness and rib width.Results showed that the integrated effects of three-dimensional channel structure and load distribution caused serious strain,which mainly occurred at the intersectant regions of liner wall on the gas side and the symmetric planes of channel and rib.The cooling effect and channel structural strength were significantly improved as the channel width and height decreased,leading to substantial extension of the nozzle service life.On the other hand,the successive decrease in liner thickness and rib width apparently increased the strain amplitude and residual strain of channel wall nozzle during cyclic work,significantly shortening the service life.The present work is of value for design of the channel wall nozzle to prolong its cyclic service life. 展开更多
关键词 liquid propellant rocket engine low cycle fatigue channel wall nozzle regenerative cooling nonlinear structural analysis finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部