The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation met...The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation method was proposed,and a pulsed nuclide automated separation device was developed,alongside a new chromatographic column.The length of this chromatographic column was 10 m,with an internal warp of 3 mm and a packing size of 1 mm,while the total separation units of the column reached 12,250.The most favorable conditions for the separation of nuclides were then obtained through optimizing the separation conditions of the device:Sample pH in the column=2,sample injection flow rate=5.698 mL/min,chromatographic column heating temperature=60℃.Separation experiments were also carried out for uranium,europium,and sodium ions in mixed solutions;uranium and sodium ions in water samples from the Ganjiang River;and uranium,sodium,and magnesium ions from seawater samples.The separation factors between the different nuclei were then calculated based on the experimental data,and a formula for the separation level was derived.The experimental results showed that the separation factor in the mixed solution of uranium and europium(1:1)was 1.088,while achieving the initial separation of uranium and europium theoretically required a 47-stage separation.Considering the separation factor of 1.50for the uranium and sodium ions in water samples from the Ganjiang River,achieving the initial separation of uranium and sodium ions would have theoretically required at least a 21-stage separation.Furthermore,for the seawater sample separation experiments,the separation factor of uranium and sodium ions was 1.2885;therefore,more than 28 stages of sample separation would be required to achieve uranium extraction from seawater.The novel pulsed liquid chromatography method proposed in this study was innovative in terms of uranium separation and enrichment,while expanding the possibilities of extracting uranium from seawater through chromatography.展开更多
This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for p...This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for polyynes synthesis thanks to its flexibility with varying laser parameters,solvents,and targets.This allows the control of sp-carbon chains properties as yield,length,termination and stability.Although many reviews related to PLAL have been published,a comprehensive work reporting the current status and advances related to the synthesis of sp-carbon chains by PLAL is still missing.Here we first review the principle of PLAL and the mechanisms of formation of sp-carbon chains.Then we discuss the role of laser fluence(i.e.energy density),solvent,and target for sp-carbon chains synthesis.Lastly,we report the progress related to the prolonged stability of sp-carbon chains by PLAL encapsulated in polymeric matrices.This review will be a helpful guide for researchers interested in synthesizing sp-carbon chains by PLAL.展开更多
Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of w...Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of water molecules exhibits a pronounced resonance with THz pulses in the frequency range of 14-17 THz. With the THz pulse at resonant frequencies, the maximum temperature is about 562 K by heating the water at room temperature. Further investigation indicates that the results are independent of the size of the nanoscale water box. The efficiency of energy transfer by resonant absorption is more than seven times of microwave heating. These studies show promising applications of ultrashort THz pulses.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired ...Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.展开更多
Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur...Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur product.This composite comprises Ru nanoclusters supported on the CuS nanostructure,achieved through simple pulsed laser irradiation in liquid approach.The optimized CuS/Ru-30 electrocatalyst demonstrates remarkable bifunctional electrocatalytic activity,exhibiting a negligible working potential of 0.28 V(vs.RHE)for the anodic sulfion oxidation reaction(SOR)and a minimal overpotential of 182 m V for cathodic hydrogen evolution reaction(HER)to achieve 10 mA cm^(-2)of current density.Moreover,the Cu S/Ru-30 electrocatalyst shows exceptional selectivity for converting sulfion into valuable sulfur during anodic oxidation reactions.Remarkably,in a two-electrode electrolyzer system utilizing Cu S/Ru-30 as both the anode and cathode,the SOR+HER coupled water electrolysis system demands only 0.52 V to reach 10 mA cm^(-2),which is considerably lesser compared to the OER+HER coupled water electrolysis(1.85 V).The experimental results and density function theory(DFT)calculations reveal that the strong electron interaction between CuS and Ru nanoclusters generates a built-in electric field,greatly enhancing electron transfer efficiency.This significantly boosts the HER performance and facilitates the adsorption and production of sulfur intermediates.This study presents a rapid and simple strategy for synthesizing a dual-functional catalyst suitable for low-voltage hydrogen generation while facilitating the recovery of valuable sulfur sources.展开更多
Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing ins...Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.展开更多
We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscos...We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscosity is shown to play an important role in Brillouin linewidth determination. Pulse durations of SBS back-reflected optical pulses are measured over the temperature range of 5-40℃. SBS linewidths are de- termined via Fourier transformation of the time-domain results, and the bulk viscosity of water is measured and derived from the obtained values. Our results show that the proposed method for measurement of pulse durations is an effective approach for determining bulk viscosity. The method can be easily extended to determine bulk viscosities of other Newtonian liquids.展开更多
Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods we...Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods were characterized spectroscopically and employed as multifunctional electrocatalysts in OER,HER,and the furfural oxidation reactions(FOR).Ir-CuO nanorods afford the lowest overpotential of~345 mV(HER) and 414 mV(OER) at 10 mA cm^(-2),provide the highest 2-furoic acid yield(~10.85 mM) with 64.9% selectivity,and the best Faradaic efficiency~72.7% in 2 h of FOR at 1.58 V(vs.RHE).In situ electrochemical-Raman analysis of the Ir-CuO detects the formation of the crucial intermediates,such as Cu(Ⅲ)-oxide,Cu(OH)_(2),and Ir_x(OH)_y,on the electrode-electrolyte surface,which act as a promoter for HER and OER.The Ir-CuO ‖ Ir-CuO in a coupled HER and FOR-electrolyzer operates at~200 mV lower voltage,compared with the conventional electrolyzer and embodies the dual advantage of energy-saving H_(2) and 2-furoic acid production.展开更多
The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a gian...The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a giant-pulse laser.Aqueous solutions with and without the surfactant poly(N-vinyl-2-pyrrolidone)(PVP)were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs.The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation.This effect was more pronounced and prolonged in high-viscosity solutions,hindering energy transfer from subsequent laser pulses to the target.Additionally,it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency.Videography experiments were conducted to explore the ablation mechanism employed by the MCL system.The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size,which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.展开更多
High entropy metallic glass nanoparticles(HEMG NPs)are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combine...High entropy metallic glass nanoparticles(HEMG NPs)are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure.Up until now,the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports,which limited their widespread use.Hence,more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable.We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs.An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy(TEM),energy-dispersive X-ray spectroscopy(EDX),X-ray diffraction(XRD),and Xray photoelectron spectroscopy(XPS)methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation,which were stabilized within graphitic shells.Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy,probably due to the defect generation by atomic size mismatch.Furthermore,we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.展开更多
To achieve enhanced photocatalytic activity for the degradation of lindane, we prepared metal–semiconductor composite nanoparticles(NPs). Zn@ZnO core–shell(CS) nanocomposites, calcined ZnO, and Ag-doped ZnO(ZnO...To achieve enhanced photocatalytic activity for the degradation of lindane, we prepared metal–semiconductor composite nanoparticles(NPs). Zn@ZnO core–shell(CS) nanocomposites, calcined ZnO, and Ag-doped ZnO(ZnO/Ag) nanostructures were prepared using pulsed laser ablation in liquid, calcination, and photodeposition methods, respectively, without using surfactants or catalysts. The as-prepared catalysts were characterized by using X-ray diffraction(XRD), field-emission scanning electron microscopy, high-resolution transmission electron microscopy, ultraviolet–visible(UV–vis) spectroscopy, and photoluminescence spectroscopy. In addition, elemental analysis was performed by energy dispersive X-ray spectroscopy. The obtained XRD and morphology results indicated good dispersion of Zn and Ag NPs on the surface of the ZnO nanostructures. Investigation of the photocatalytic degradation of lindane under UV–vis irradiation showed that Zn@ZnO CS nanocomposites exhibit higher photocatalytic activity than the other prepared samples. The maximum degradation rate of lindane was 99.5% in 40 min using Zn@ZnO CS nanocomposites. The radical trapping experiments verified that the hydroxyl radical(·OH) was the main reactive species for the degradation of lindane.展开更多
基金the Natural Science Foundation of Jiangxi Province,China(No.20202BABL203004)the Opening Project of the State Key Laboratory of Nuclear Resources and Environment(East China University of Technology)(No.2022NRE23)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(No.PMND202101).
文摘The novel pulsed liquid chromatography radionuclide separation method presented here provides a new and promising strategy for the extraction of uranium from seawater.In this study,a new chromatographic separation method was proposed,and a pulsed nuclide automated separation device was developed,alongside a new chromatographic column.The length of this chromatographic column was 10 m,with an internal warp of 3 mm and a packing size of 1 mm,while the total separation units of the column reached 12,250.The most favorable conditions for the separation of nuclides were then obtained through optimizing the separation conditions of the device:Sample pH in the column=2,sample injection flow rate=5.698 mL/min,chromatographic column heating temperature=60℃.Separation experiments were also carried out for uranium,europium,and sodium ions in mixed solutions;uranium and sodium ions in water samples from the Ganjiang River;and uranium,sodium,and magnesium ions from seawater samples.The separation factors between the different nuclei were then calculated based on the experimental data,and a formula for the separation level was derived.The experimental results showed that the separation factor in the mixed solution of uranium and europium(1:1)was 1.088,while achieving the initial separation of uranium and europium theoretically required a 47-stage separation.Considering the separation factor of 1.50for the uranium and sodium ions in water samples from the Ganjiang River,achieving the initial separation of uranium and sodium ions would have theoretically required at least a 21-stage separation.Furthermore,for the seawater sample separation experiments,the separation factor of uranium and sodium ions was 1.2885;therefore,more than 28 stages of sample separation would be required to achieve uranium extraction from seawater.The novel pulsed liquid chromatography method proposed in this study was innovative in terms of uranium separation and enrichment,while expanding the possibilities of extracting uranium from seawater through chromatography.
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program ERC Consolidator Grant(ERC Co G2016 Esp LORE grant agreement No.724610,website:www.esplore.polimi.it)
文摘This review provides a discussion of the current state of research on sp-carbon chains synthesized by pulsed laser ablation in liquid.In recent years,pulsed laser ablation in liquid(PLAL)has been widely employed for polyynes synthesis thanks to its flexibility with varying laser parameters,solvents,and targets.This allows the control of sp-carbon chains properties as yield,length,termination and stability.Although many reviews related to PLAL have been published,a comprehensive work reporting the current status and advances related to the synthesis of sp-carbon chains by PLAL is still missing.Here we first review the principle of PLAL and the mechanisms of formation of sp-carbon chains.Then we discuss the role of laser fluence(i.e.energy density),solvent,and target for sp-carbon chains synthesis.Lastly,we report the progress related to the prolonged stability of sp-carbon chains by PLAL encapsulated in polymeric matrices.This review will be a helpful guide for researchers interested in synthesizing sp-carbon chains by PLAL.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10975033,11404070 and 11275048the Science Foundation for Youths of Guangxi Province under Grant No 2014GXNSFBA118022the Scientific Research Foundation of Guangxi Education Department under Grant No 2013ZD039
文摘Non-equilibrium molecular dynamics simulations of liquid water in picosecond high-power terahertz pulses are performed by using a non-polarizable potential model. Numerical results show that the energy absorption of water molecules exhibits a pronounced resonance with THz pulses in the frequency range of 14-17 THz. With the THz pulse at resonant frequencies, the maximum temperature is about 562 K by heating the water at room temperature. Further investigation indicates that the results are independent of the size of the nanoscale water box. The efficiency of energy transfer by resonant absorption is more than seven times of microwave heating. These studies show promising applications of ultrashort THz pulses.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金supported by Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(Nos.2019R1A6C1010042 and 2021R1A6C103A427)the financial support from National Research Foundation of Korea(NRF),(2022R1A2C2010686,2022R1A4A3033528,2019H1D3A1A01071209,and 2021R1I1A1A01060380)
文摘Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(No.2019R1A6C1010042)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1C1C2010726)。
文摘Herein,we propose a simple and rapid approach for synthesizing a CuS/Ru composite that serves as a bifunctional electrocatalyst to promote hydrogen production and concurrently convert sulfion into a value-added sulfur product.This composite comprises Ru nanoclusters supported on the CuS nanostructure,achieved through simple pulsed laser irradiation in liquid approach.The optimized CuS/Ru-30 electrocatalyst demonstrates remarkable bifunctional electrocatalytic activity,exhibiting a negligible working potential of 0.28 V(vs.RHE)for the anodic sulfion oxidation reaction(SOR)and a minimal overpotential of 182 m V for cathodic hydrogen evolution reaction(HER)to achieve 10 mA cm^(-2)of current density.Moreover,the Cu S/Ru-30 electrocatalyst shows exceptional selectivity for converting sulfion into valuable sulfur during anodic oxidation reactions.Remarkably,in a two-electrode electrolyzer system utilizing Cu S/Ru-30 as both the anode and cathode,the SOR+HER coupled water electrolysis system demands only 0.52 V to reach 10 mA cm^(-2),which is considerably lesser compared to the OER+HER coupled water electrolysis(1.85 V).The experimental results and density function theory(DFT)calculations reveal that the strong electron interaction between CuS and Ru nanoclusters generates a built-in electric field,greatly enhancing electron transfer efficiency.This significantly boosts the HER performance and facilitates the adsorption and production of sulfur intermediates.This study presents a rapid and simple strategy for synthesizing a dual-functional catalyst suitable for low-voltage hydrogen generation while facilitating the recovery of valuable sulfur sources.
基金supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD,Basic Research Promotion Fund) (KRF-2007-D00084)
文摘Penetration depth,spray dispersion angle,droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine.These processes will enhance air/fuel mixing inside the combustor.Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated.And experiments were conducted to a range of cross-flow velocities from 42~136 m/s.Air is injected with 0~300kPa,with air-assist pulsation frequency of 0~20Hz.Pulsation frequency was modulated by solenoid valve.Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics.High-speed CCD camera was used to obtain injected spray structure.Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration.Air-assist makes a very fine droplet which generated mist-like spray.Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field.The results show that pulsation frequency has an effect on penetration,transverse velocities and droplet sizes.The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.
基金supported by the National Natural Sci-ence Foundation of China under Grants Nos.41206084 and 61177096
文摘We present a method by which to determine the bulk viscosity of water from pulse duration measurements of stimulated Brillouin scattering (SBS). Beginning from a common model of Brillouin scattering, the bulk viscosity is shown to play an important role in Brillouin linewidth determination. Pulse durations of SBS back-reflected optical pulses are measured over the temperature range of 5-40℃. SBS linewidths are de- termined via Fourier transformation of the time-domain results, and the bulk viscosity of water is measured and derived from the obtained values. Our results show that the proposed method for measurement of pulse durations is an effective approach for determining bulk viscosity. The method can be easily extended to determine bulk viscosities of other Newtonian liquids.
基金supported by the Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education. (2019R1A6C1010042, 2021R1A6C103A427)the financial support from the National Research Foundation of Korea (NRF), (2022R1A2C2010686, 2022R1A4A3033528, 2021R1I1A1A01060380, 2019H1D3A1A01071209)。
文摘Here,CuO nanorods fabricated via pulsed laser ablation in liquids were decorated with Ir,Pd,and Ru NPs(loading~7 wt%) through pulsed laser irradiation in the liquids process.The resulting NPs-decorated CuO nanorods were characterized spectroscopically and employed as multifunctional electrocatalysts in OER,HER,and the furfural oxidation reactions(FOR).Ir-CuO nanorods afford the lowest overpotential of~345 mV(HER) and 414 mV(OER) at 10 mA cm^(-2),provide the highest 2-furoic acid yield(~10.85 mM) with 64.9% selectivity,and the best Faradaic efficiency~72.7% in 2 h of FOR at 1.58 V(vs.RHE).In situ electrochemical-Raman analysis of the Ir-CuO detects the formation of the crucial intermediates,such as Cu(Ⅲ)-oxide,Cu(OH)_(2),and Ir_x(OH)_y,on the electrode-electrolyte surface,which act as a promoter for HER and OER.The Ir-CuO ‖ Ir-CuO in a coupled HER and FOR-electrolyzer operates at~200 mV lower voltage,compared with the conventional electrolyzer and embodies the dual advantage of energy-saving H_(2) and 2-furoic acid production.
基金supported by JSPS KAKENHI(JP19K22187)Foundation for the Promotion of Science&Engineering for financial supportthe Japan International Cooperation Agency(JICA)and Otsuka Toshimi Scholarship Foundation(21-S58 and 22-S30)for kindly providing scholarships.
文摘The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a giant-pulse laser.Aqueous solutions with and without the surfactant poly(N-vinyl-2-pyrrolidone)(PVP)were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs.The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation.This effect was more pronounced and prolonged in high-viscosity solutions,hindering energy transfer from subsequent laser pulses to the target.Additionally,it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency.Videography experiments were conducted to explore the ablation mechanism employed by the MCL system.The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size,which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.
文摘High entropy metallic glass nanoparticles(HEMG NPs)are very promising materials for energy conversion due to the wide tuning possibilities of electrochemical potentials offered by their multimetallic character combined with an amorphous structure.Up until now,the generation of these HEMG NPs involved tedious synthesis procedures where the generated particles were only available on highly specialized supports,which limited their widespread use.Hence,more flexible synthetic approaches to obtain colloidal HEMG NPs for applications in energy conversion and storage are highly desirable.We utilized pulsed laser ablation of bulk high entropy alloy targets in acetonitrile to generate colloidal carbon-coated CrCoFeNiMn and CrCoFeNiMnMo HEMG NPs.An in-depth analysis of the structure and elemental distribution of the obtained nanoparticles down to single-particle levels using advanced transmission electron microscopy(TEM),energy-dispersive X-ray spectroscopy(EDX),X-ray diffraction(XRD),and Xray photoelectron spectroscopy(XPS)methods revealed amorphous quinary and senary alloy phases with slight manganese oxide/hydroxide surface segregation,which were stabilized within graphitic shells.Studies on the catalytic activity of the corresponding carbon-HEMG NPs during oxygen evolution and oxygen reduction reactions revealed an elevated activity upon the incorporation of moderate amounts of Mo into the amorphous alloy,probably due to the defect generation by atomic size mismatch.Furthermore,we demonstrate the superiority of these carbon-HEMG NPs over their crystalline analogies and highlight the suitability of these amorphous multi-elemental NPs in electrocatalytic energy conversion.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2016R1D1A1B03934376)by the Korea government(MSIP)(Nos.2017M2B2A9A02049940,2017R1A41014595(J.H.Kim))
文摘To achieve enhanced photocatalytic activity for the degradation of lindane, we prepared metal–semiconductor composite nanoparticles(NPs). Zn@ZnO core–shell(CS) nanocomposites, calcined ZnO, and Ag-doped ZnO(ZnO/Ag) nanostructures were prepared using pulsed laser ablation in liquid, calcination, and photodeposition methods, respectively, without using surfactants or catalysts. The as-prepared catalysts were characterized by using X-ray diffraction(XRD), field-emission scanning electron microscopy, high-resolution transmission electron microscopy, ultraviolet–visible(UV–vis) spectroscopy, and photoluminescence spectroscopy. In addition, elemental analysis was performed by energy dispersive X-ray spectroscopy. The obtained XRD and morphology results indicated good dispersion of Zn and Ag NPs on the surface of the ZnO nanostructures. Investigation of the photocatalytic degradation of lindane under UV–vis irradiation showed that Zn@ZnO CS nanocomposites exhibit higher photocatalytic activity than the other prepared samples. The maximum degradation rate of lindane was 99.5% in 40 min using Zn@ZnO CS nanocomposites. The radical trapping experiments verified that the hydroxyl radical(·OH) was the main reactive species for the degradation of lindane.