期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Full Dynamic Model for Liquid Sloshing Simulation in Cylindrical Tank Shape
1
作者 Omar Noui Mohamed Bouazara Marc J. Richard 《World Journal of Mechanics》 2024年第4期55-72,共18页
This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a net... This study presents a comprehensive full dynamic model designed for simulating liquid sloshing behavior within cylindrical tank structures. The model employs a discretization approach, representing the liquid as a network of interconnected spring-damper-mass systems. Key aspects include the adaptation of liquid discretization techniques to cylindrical lateral cross-sections and the calculation of stiffness and damping coefficients. External forces, simulating various vehicle maneuvers, are also integrated into the model. The resulting system of equations is solved using Maple Software with the Runge-Kutta-Fehlberg method. This model enables accurate prediction of liquid displacement and pressure forces, offering valuable insights for tank design and fluid dynamics applications. Ongoing refinement aims to broaden its applicability across different liquid types and tank geometries. 展开更多
关键词 Fluid-Structure Interaction Equivalent Mechanical Model liquid Discretization Spring-Mass Model Spring-Mass Network liquid simulation
下载PDF
CFD simulation of effect of anode configuration on gas–liquid flow and alumina transport process in an aluminum reduction cell 被引量:3
2
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2482-2492,共11页
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a... Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role. 展开更多
关键词 aluminum reduction cell anode configuration gas–liquid flow alumina transport process simulation alumina content distribution
下载PDF
SIMULATION OF GAS AND LIQUID TWO-PHASE FLOW THROUGH THE BLAST FURNACE DROPPING ZONE
3
作者 谢裕生 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 1985年第1期63-76,共14页
A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement b... A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed. 展开更多
关键词 simulation OF GAS AND liquid TWO-PHASE FLOW THROUGH THE BLAST FURNACE DROPPING ZONE
下载PDF
A New Simulation of Track Structure of Low-Energy Electrons in Liquid Water:Considering the Condensed-Phase Effect on Electron Elastic Scattering
4
作者 刘玮 谭震宇 C.Champion 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期35-38,共4页
A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w... A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons. 展开更多
关键词 of as in A New simulation of Track Structure of Low-Energy Electrons in liquid Water:Considering the Condensed-Phase Effect on Electron Elastic Scattering for CCPI on is
下载PDF
MOLECULAR DYNAMICS SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE WATER CLUSTERS IN LIQUID WATER AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS
5
作者 GUO Guangjun,ZHANG Yigang and ZHAO Yajuan Institute of Geology and Geophysics,Chinese Academy of sciences Beijing 100029,Chinese 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期62-66,共5页
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime... Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates. 展开更多
关键词 like in time that were MOLECULAR DYNAMICS simulationS OF FILLED AND EMPTY CAGE-LIKE WATER CLUSTERS IN liquid WATER AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS of cage GAS
下载PDF
Verification on Spray Simulation of a Pintle Injector for Liquid Rocket Engine 被引量:16
6
作者 Min Son Kijeong Yu +2 位作者 Kanmaniraja Radhakrishnan Bongchul Shin Jaye Koo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期90-96,共7页
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner struct... The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids. 展开更多
关键词 Spray characteristics Pintle injector simulation Experiment liquid rocket engine
原文传递
Numerical simulation of flow hydrodynamics of struvite pellets in a liquid–solid fluidized bed 被引量:3
7
作者 Xin Ye Dongyuan Chu +3 位作者 Yaoyin Lou Zhi-Long Ye Ming Kuang Wang Shaohua Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第7期391-401,共11页
Phosphorus recovery in the form of struvite has been aroused in recent decades for its dual advantages in eutrophication control and resource protection.The usage of the struvite products is normally determined by the... Phosphorus recovery in the form of struvite has been aroused in recent decades for its dual advantages in eutrophication control and resource protection.The usage of the struvite products is normally determined by the size which is largely depended on the hydrodynamics.In this study,flow behavior of struvite pellets was simulated by means of Eulerian–Eulerian two-fluid model combining with kinetic theory of granular flow in a liquid–solid fluidized bed reactor(FBR).A parametric study including the mesh size,time step,discretization strategy,turbulent model and drag model was first developed,followed by the evaluations of crucial operational conditions,particle characteristics and reactor shapes.The results showed that a cold model with the mesh resolution of 16 × 240,default time step of 0.001 sec and first order discretization scheme was accurate enough to describe the fluidization.The struvite holdup profile using Syamlal–O'Brien drag model was best fitted to the experimental data as compared with other drag models and the empirical Richardson–Zaki equation.Regarding the model evaluation,it showed that liquid velocity and particle size played important roles on both solid holdups and velocities.The reactor diameter only influenced the solid velocity while the static bed height almost took no effect.These results are direct and can be applied to guide the operation and process control of the struvite fluidization.Moreover,the model parameters can also be used as the basic settings in further crystallization simulations. 展开更多
关键词 Numerical simulation Flow hydrodynamics Struvite liquid–solid fluidized bed
原文传递
NUMERICAL VALIDATION OF COMPUTATIONAL MODEL FOR SHEET CAVITATING FLOWS 被引量:1
8
作者 LI Jun LIU Lijun FENG Zhenping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期45-49,共5页
A computational modeling for the sheet cavitating flows is presented. The cavitation model is implemented in a viscous Navier-Stokes solver. The cavity interface and shape are determined using an iterative procedure m... A computational modeling for the sheet cavitating flows is presented. The cavitation model is implemented in a viscous Navier-Stokes solver. The cavity interface and shape are determined using an iterative procedure matching the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient on the wall, is taken into account in updating the cavity shape iteratively. Numerical computations are performed for the sheet cavitating flows at a range of cavitation numbers across the hemispheric headform/cylinder body with different grid numbers. The influence of the relaxation factor in the cavity shape updating scheme for the algorithm accuracy and reliability is conducted through comparison with other two cavity shape updating numerical schemes. The results obtained are reasonable and the iterative procedure of cavity shape updating is quite stable, which demonstrate the superiority of the proposed cavitation model and algorithms. 展开更多
关键词 Sheet cavitation liquid/vapor tracking method Numerical simulation
下载PDF
Physical Simulation of Molten Slag Granulation by Rotary Disk 被引量:3
9
作者 MIN Yi HUANG Jian +2 位作者 LIU Cheng-jun JIANG Mao-fa YU Xue-qing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第9期26-32,共7页
A physical model of molten slag granulation by rotary disk was developed based on the mechanism of New-tonian liquid granulation. For geometrical similarity, the radius ratio of model disk to the prototype disk was ch... A physical model of molten slag granulation by rotary disk was developed based on the mechanism of New-tonian liquid granulation. For geometrical similarity, the radius ratio of model disk to the prototype disk was chosen as 1 : 1. For dynamic similarity, equality of Ohnesorge number between the model and the prototype was achieved firstly by compounding rosin and paraffin wax with mass ratio of 4 ~ 1 as simulation liquid of molten blast furnace (BF) slag, and the simulation material can satisfy the similarity of liquid solid transformation during falling in the medium; then equality of Reynolds number and Weber number was obtained by controlling the volumetric flow rate and the rotary speed, respectively. Model accuracy was verified by comparing the simulation data with the results re ported in literature, which showed good agreement with the calculation results of empirical equation and the actual molten BF slag granulation from the view point of particle size. Furthermore, influences of disk radius, rotary speed and liquid flow rate on granulation were discussed using the developed model, and the Kitamura equation was modi-fied according to the simulation data which can predict particle size more accurately. Using the modified equation, the operation parameters were predicted according to the flow rate of molten industrial BF slag. 展开更多
关键词 physical model simulation liquid molten slag GRANULATION rotary disk
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部