Work is devoted to the analysis of errors meeting in literature in treatment of a spatial part of a phase of running sound waves. In some cases, it is not taken into consideration that this part of a phase is formed b...Work is devoted to the analysis of errors meeting in literature in treatment of a spatial part of a phase of running sound waves. In some cases, it is not taken into consideration that this part of a phase is formed by scalar product of vectors which does not depend on a choice of system of co-ordinates. Taking into account the necessary corrections in record of a phase of plane waves, it is shown that the decision of the homogeneous wave equation in the form of “belated” potentials is simultaneously and the decision of the equations of movement of a liquid, and “outstripped” potentials does not satisfy them. The analysis of coefficients of reflection and passage of running waves in non-uniform space is carried out. It is shown that on boundary of spaces with different sound speeds, a turning point of a sound wave is the point of full internal reflection. The way of calculation of coefficients of reflection and passage is offered by consideration of all three waves on boundary of spaces as vectors with the set directions and amplitude of a falling wave. Calculation of coefficients of reflection and passage of a sound wave in a wave-guide of canonical type along the chosen trajectory by two methods—under traditional formulas and a vector method is carried out. Results of calculation practically coincide.展开更多
We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectr...We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of initial stress in the piezoelectric layer and the viscous coefficient of the liquid on the phase velocity of Love waves are analyzed. Numerical results are presented and discussed. The analytical method and the results can be useful for the design of chemical and biosensing liquid sensors.展开更多
A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetr...A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.展开更多
This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transdu...This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.展开更多
Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene ...Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.展开更多
The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction patt...The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction pattern is observed to be of asymmetry, involving orders, position and interval of the diffraction spots that are discovered during the light grazing incidence. It is found that the larger the angle of incidence is, the more obvious the asymmetry is. The higher the negative diffraction orders are, the smaller the intervals between spots are. On the contrary~ in the positive region, the higher the diffraction orders are, the larger the spot intervals are. The positive interval is larger than that of the same negative diffraction order. If the incident angle reaches 1.558 rad in the experiment, all positive diffraction orders completely vanish. Based on the mechanism of phase modulation and with the Fourier transform method, the relations between the incident angle and position, interval spaces, and orders of diffraction spots are derived theoretically. The theoretical calculations are compared with the experimental data, and the comparison shows that the theoretical calculations are in good agreement with the experimental measurement.展开更多
It is consider that, from the standpoint of the law of conservation of energy, the process of converting sound wave falls on the boundary between two spaces in two, leaving the boundary, reflected and passage. It is a...It is consider that, from the standpoint of the law of conservation of energy, the process of converting sound wave falls on the boundary between two spaces in two, leaving the boundary, reflected and passage. It is assumed that the simultaneous presence of three waves is impossible, and that the process of converting one wave in two waves occurs instantaneously. Based on this concept, enter the following boundary conditions for the calculation of amplitudes (coefficients) of the reflected and passage waves. The initial phases of the reflected and passage waves coincide with the phase of the falling wave. The energy of the falling wave is equal to the sum of the energies of the reflected and passage waves. The normal component velocity amplitude of the particle of the liquid under the influence of the falling wave is equal to the sum of the normal component of particle velocity amplitudes of the reflected and passage waves. It was found that the character of dependence of the reflection coefficient on the angle of departure of the initial wave is the same as in the traditional formulas, but the coefficient of passage does not exceed unity. Calculations of reflection and passage coefficients for different values of the refractive coefficient at the boundary between two homogeneous spaces as well as the canonical form of the waveguide, wherein the speed of sound which is minimum at predetermined depth is carried out.展开更多
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column...The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.展开更多
It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical...It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.展开更多
The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-...The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.展开更多
In order to investigate the material corrosion by liquid droplet solid impact, a nonlinear coupling wave model adopted to analyze the impact between the spherical liquid droplet and an elastic solid plane has been dev...In order to investigate the material corrosion by liquid droplet solid impact, a nonlinear coupling wave model adopted to analyze the impact between the spherical liquid droplet and an elastic solid plane has been developed. Many usable results such as the dimensionless pressure in the contact plane of liquid solid and inside the liquid droplet, the equivalent stress distribution inside the solid, the effect of solid elasticity on the impact, and the locations of the maximum equivalent stress in different...展开更多
The fully-leaky guided wave technique has been used to study the reflective 90? MTN liquid crystal cell used for LCOS. The cell is comprised of upper substrate with indium-tin-oxide coating and lower substrate with al...The fully-leaky guided wave technique has been used to study the reflective 90? MTN liquid crystal cell used for LCOS. The cell is comprised of upper substrate with indium-tin-oxide coating and lower substrate with aluminum coating. Reflective angle-dependent signals (Rss, Rpp, Rsp and Rps) were recorded over a range of angles of incidence with the cell under application of 0 - 7 Vrms ac electric fields. From the recorded experimental data, we found the reflective signals are quite strong, especially the polarization conversion signals. Fitting the data in reflection with the results of the modeling-program gives the information about the pre-tilt and twist of the director as well as the parameters of different optical layers. We found that the pre-tilt angle on the upper substrate is different from that on the bottom in the best fits, which suggests that the indium-tin-oxide and the aluminum coatings have different effects on the alignment layers.展开更多
This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled a...This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.展开更多
The advanced design of a 10 × 1 linear antenna array system with the capa-bility of frequency tunability using GT3-23001 liquid crystal (LC) is pro-posed. The design for this reconfigurable wideband antenna array...The advanced design of a 10 × 1 linear antenna array system with the capa-bility of frequency tunability using GT3-23001 liquid crystal (LC) is pro-posed. The design for this reconfigurable wideband antenna array for 5G ap-plications at Ka-band millimeter-wave (mmw) consists of a double layer of stacked patch antenna with aperture coupled feeding. The bias voltage over LC varies from 0 V to 10.6 V to achieve a frequency tunability of 1.18 GHz. The array operates from 25.3 GHz to 33.8 GHz with a peak gain of 19.2 dB and a beamwidth of 5.2<span style="white-space:nowrap;">°</span> at 30 GHz. The proposed reconfigurable antenna ar-ray represents a real and efficient solution for the recent and future mmw 5G networks. The proposed antenna is suitable for 5G base stations in stadiums, malls and convention centers. It is proper for satellite communications and radars at mmw.展开更多
This paper is proposed to consider the propagation of sound waves in the liquid as a result of special deformation of the medium. Mechanical vibrations of the membrane, (diaphragm) creating a sound wave, transfer from...This paper is proposed to consider the propagation of sound waves in the liquid as a result of special deformation of the medium. Mechanical vibrations of the membrane, (diaphragm) creating a sound wave, transfer from layer to layer in medium without causing synchronous oscillations of the fluid particles. It can be assumed that the deformation of the liquid is similar to the driving force (pressure) in the direction perpendicular to the plane of the vibrating membrane. Usually, the running wave functions are used to describe the sound waves, but they do not contain the direction of propagation. It is proposed to consider that the amplitude of the wave is a vector coinciding with the vector tangent to the path of the wave. This would allow for a change of direction of propagation without changing its phase, in which the direction of wave is not present. It proposed a method of calculating a vector of amplitudes of the reflected and transmitted sound waves based on the laws of conservation of impulse and energy of the waves and the boundary conditions defined by Snell’s law. It is shown that one of the two solutions of the wave equation does not apply to real physical process of sound wave’s propagation in the liquid.展开更多
The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent direc...The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent directions of background reduced gravity accelerations is investigated. Results show that the greater the components of background reduced gravity in radial and circumferential directions, the greater will be the tendency toward increasing amplitude and degrees of asymmetry of the liquid-vapor interface profiles.展开更多
Terahertz (THz)-wave generation has been conducted based on difference frequency mixing (DFM) process with phonon-polariton excitation of ε-GaSe single crystals implemented with liquid-phase solution growth using the...Terahertz (THz)-wave generation has been conducted based on difference frequency mixing (DFM) process with phonon-polariton excitation of ε-GaSe single crystals implemented with liquid-phase solution growth using the temperature difference method under controlled vapour pressure for the first time. The type-eoo phase matching condition for the DFM process at around 10 THz is satisfied by changing the incident angle into the crystal. The maximum conversion efficiency in the present DFG process is about 10-6?J-1?using a 0.1-mm-thick GaSe single crystal with the only ε- phase polytype, which can be greater than that of the commercially available Bridgman grown GaSe crystal including both ε- and γ-phase polytypes.展开更多
文摘Work is devoted to the analysis of errors meeting in literature in treatment of a spatial part of a phase of running sound waves. In some cases, it is not taken into consideration that this part of a phase is formed by scalar product of vectors which does not depend on a choice of system of co-ordinates. Taking into account the necessary corrections in record of a phase of plane waves, it is shown that the decision of the homogeneous wave equation in the form of “belated” potentials is simultaneously and the decision of the equations of movement of a liquid, and “outstripped” potentials does not satisfy them. The analysis of coefficients of reflection and passage of running waves in non-uniform space is carried out. It is shown that on boundary of spaces with different sound speeds, a turning point of a sound wave is the point of full internal reflection. The way of calculation of coefficients of reflection and passage is offered by consideration of all three waves on boundary of spaces as vectors with the set directions and amplitude of a falling wave. Calculation of coefficients of reflection and passage of a sound wave in a wave-guide of canonical type along the chosen trajectory by two methods—under traditional formulas and a vector method is carried out. Results of calculation practically coincide.
基金supported by the National Natural Science Foundation of China(No.10772087)K.C.Wong Education Foundation, Hong Kong and K.C.Wong Magna Fund in Ningbo University.
文摘We investigate analytically the effect of initial stress in piezoelectric layered structures loaded with viscous liquid on the dispersive and attenuated characteristics of Love waves, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of initial stress in the piezoelectric layer and the viscous coefficient of the liquid on the phase velocity of Love waves are analyzed. Numerical results are presented and discussed. The analytical method and the results can be useful for the design of chemical and biosensing liquid sensors.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11334005,11574150 and 11564006
文摘A theoretical model which couples the oscillation of cavitation bubbles with the equation of an acoustic wave is utilized to describe the sound fields in double-layer liquids, which can be used to realize the asymmetric transmission of acoustic waves. Numerical simulations show that the asymmetry is related to the properties of the host liquids and the input acoustic wave. Asymmetry can be enhanced if the maximum number density or the ambient radius of the cavitation bubbles in the low cavitation threshold liquid increases. Moreover, the direction of rectification will be reversed if the amplitude of the input acoustic wave becomes high enough.
文摘This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.
基金supported by the National Natural Science Foundation of China (10932010 and 11072220)the Young Foundation of Zhejiang Normal University (KJ20100001)
文摘Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.
基金Supported by the Open Research Fund of State Key Laboratory of Transient Optics and Photonics of Chinese Academy of Sciences under Grant No SKLST201508the China Postdoctoral Science Foundation Funded Project under Grant No 2015M580945the Government of Chaoyang District Postdoctoral Research Foundation
文摘The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction pattern is observed to be of asymmetry, involving orders, position and interval of the diffraction spots that are discovered during the light grazing incidence. It is found that the larger the angle of incidence is, the more obvious the asymmetry is. The higher the negative diffraction orders are, the smaller the intervals between spots are. On the contrary~ in the positive region, the higher the diffraction orders are, the larger the spot intervals are. The positive interval is larger than that of the same negative diffraction order. If the incident angle reaches 1.558 rad in the experiment, all positive diffraction orders completely vanish. Based on the mechanism of phase modulation and with the Fourier transform method, the relations between the incident angle and position, interval spaces, and orders of diffraction spots are derived theoretically. The theoretical calculations are compared with the experimental data, and the comparison shows that the theoretical calculations are in good agreement with the experimental measurement.
文摘It is consider that, from the standpoint of the law of conservation of energy, the process of converting sound wave falls on the boundary between two spaces in two, leaving the boundary, reflected and passage. It is assumed that the simultaneous presence of three waves is impossible, and that the process of converting one wave in two waves occurs instantaneously. Based on this concept, enter the following boundary conditions for the calculation of amplitudes (coefficients) of the reflected and passage waves. The initial phases of the reflected and passage waves coincide with the phase of the falling wave. The energy of the falling wave is equal to the sum of the energies of the reflected and passage waves. The normal component velocity amplitude of the particle of the liquid under the influence of the falling wave is equal to the sum of the normal component of particle velocity amplitudes of the reflected and passage waves. It was found that the character of dependence of the reflection coefficient on the angle of departure of the initial wave is the same as in the traditional formulas, but the coefficient of passage does not exceed unity. Calculations of reflection and passage coefficients for different values of the refractive coefficient at the boundary between two homogeneous spaces as well as the canonical form of the waveguide, wherein the speed of sound which is minimum at predetermined depth is carried out.
文摘The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.
基金Project supported by the Open Foundation of SINOPEC Key Laboratory of Geophysics(No.WTYJY-WX2013-04-02)the National Key Basic Research Program of China(973 Program)(No.2014CB239006)the 12th 5-Year Basic Research Program of China National Packaging Corporation(CNPC)(No.2014A-3611)
文摘It becomes increasingly clear that non-uniform distribution of immiscible fluids in porous rock is particularly relevant to seismic wave dispersion. White proposed a patchy saturation model in 1975, in which spherical gas pockets were located at the center of a liquid saturated cube. For an extremely light and compressible inner gas, the physical properties can be approximated by a vacuum with White's model. The model successfully analyzes the dispersion phenomena of a P-wave velocity in gas-water- saturated rocks. In the case of liquid pocket saturation, e.g., an oil-pocket surrounded by a water saturated host matrix, the light fluid-pocket assumption is doubtful, and few works have been reported in White's framework. In this work, Poisson's ratio, the bulk modulus, and the effective density of a dual-liquid saturated medium are formulated for the heterogeneous porous rocks containing liquid-pockets. The analysis of the difference between the newly derived bulk modulus and that of White's model shows that the effects of liquid-pocket saturation do not disappear unless the porosity approaches zero. The inner pocket fluid can no longer be ignored. The improvements of the P-wave velocity predictions are illustrated with two examples taken from experiments, i.e., the P-wave velocity in the sandstone saturated by oil and brine and the P-wave velocity for heavy oils and stones at different temperatures.
文摘The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.
基金Natural Science Foundation of Xi'an Jiaotong University (5 73 0 2 7)
文摘In order to investigate the material corrosion by liquid droplet solid impact, a nonlinear coupling wave model adopted to analyze the impact between the spherical liquid droplet and an elastic solid plane has been developed. Many usable results such as the dimensionless pressure in the contact plane of liquid solid and inside the liquid droplet, the equivalent stress distribution inside the solid, the effect of solid elasticity on the impact, and the locations of the maximum equivalent stress in different...
文摘The fully-leaky guided wave technique has been used to study the reflective 90? MTN liquid crystal cell used for LCOS. The cell is comprised of upper substrate with indium-tin-oxide coating and lower substrate with aluminum coating. Reflective angle-dependent signals (Rss, Rpp, Rsp and Rps) were recorded over a range of angles of incidence with the cell under application of 0 - 7 Vrms ac electric fields. From the recorded experimental data, we found the reflective signals are quite strong, especially the polarization conversion signals. Fitting the data in reflection with the results of the modeling-program gives the information about the pre-tilt and twist of the director as well as the parameters of different optical layers. We found that the pre-tilt angle on the upper substrate is different from that on the bottom in the best fits, which suggests that the indium-tin-oxide and the aluminum coatings have different effects on the alignment layers.
基金This research was financially supported partially by the National Science Foundation of Japan under grant No.10555173 This work was partially supported by the Scholarship from Japan Ministry of Education,Science and Culture.
文摘This paper describes experimental and theoretical investigations of Tuned Liquid Damper (TLD) characteristics for suppressing the wave-excited structural vibration. The structural model for the experiments is scaled according to a full size offshore platform by matching their dynamic properties. Rectangular TLDs of different sizes with partially filled liquid are examined. By observing the performance and behavior of TLDs through laboratory experiments, the Study investigates the influence of a number of parameters, including container size, container shape, frequency ratio, and incident wave characteristics. In an analytical study, a mathematical model that describes the nonlinear behavior of liquid in TLD and the interaction of TLD and structure is prerequisite. The validity of the model is evaluated and simulating results can reasonably match the corresponding experimental results.
文摘The advanced design of a 10 × 1 linear antenna array system with the capa-bility of frequency tunability using GT3-23001 liquid crystal (LC) is pro-posed. The design for this reconfigurable wideband antenna array for 5G ap-plications at Ka-band millimeter-wave (mmw) consists of a double layer of stacked patch antenna with aperture coupled feeding. The bias voltage over LC varies from 0 V to 10.6 V to achieve a frequency tunability of 1.18 GHz. The array operates from 25.3 GHz to 33.8 GHz with a peak gain of 19.2 dB and a beamwidth of 5.2<span style="white-space:nowrap;">°</span> at 30 GHz. The proposed reconfigurable antenna ar-ray represents a real and efficient solution for the recent and future mmw 5G networks. The proposed antenna is suitable for 5G base stations in stadiums, malls and convention centers. It is proper for satellite communications and radars at mmw.
文摘This paper is proposed to consider the propagation of sound waves in the liquid as a result of special deformation of the medium. Mechanical vibrations of the membrane, (diaphragm) creating a sound wave, transfer from layer to layer in medium without causing synchronous oscillations of the fluid particles. It can be assumed that the deformation of the liquid is similar to the driving force (pressure) in the direction perpendicular to the plane of the vibrating membrane. Usually, the running wave functions are used to describe the sound waves, but they do not contain the direction of propagation. It is proposed to consider that the amplitude of the wave is a vector coinciding with the vector tangent to the path of the wave. This would allow for a change of direction of propagation without changing its phase, in which the direction of wave is not present. It proposed a method of calculating a vector of amplitudes of the reflected and transmitted sound waves based on the laws of conservation of impulse and energy of the waves and the boundary conditions defined by Snell’s law. It is shown that one of the two solutions of the wave equation does not apply to real physical process of sound wave’s propagation in the liquid.
文摘The dynamical behavior of fluids affected by the asymmetric gravity jitter oscillations, in particular, the effect of surface tension on partially-filled rotating fluids in a Dewar tank imposed by time-dependent directions of background reduced gravity accelerations is investigated. Results show that the greater the components of background reduced gravity in radial and circumferential directions, the greater will be the tendency toward increasing amplitude and degrees of asymmetry of the liquid-vapor interface profiles.
文摘Terahertz (THz)-wave generation has been conducted based on difference frequency mixing (DFM) process with phonon-polariton excitation of ε-GaSe single crystals implemented with liquid-phase solution growth using the temperature difference method under controlled vapour pressure for the first time. The type-eoo phase matching condition for the DFM process at around 10 THz is satisfied by changing the incident angle into the crystal. The maximum conversion efficiency in the present DFG process is about 10-6?J-1?using a 0.1-mm-thick GaSe single crystal with the only ε- phase polytype, which can be greater than that of the commercially available Bridgman grown GaSe crystal including both ε- and γ-phase polytypes.