期刊文献+
共找到211,134篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism from particle compaction to fluidization of liquid–solid two-phase flow
1
作者 张悦 宋锦春 +2 位作者 马连喜 郑连存 刘明贺 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期373-377,共5页
A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-... A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified. 展开更多
关键词 liquid–solid flow two-phase flow cohesive strength yield stress
下载PDF
An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF 被引量:3
2
作者 Jun Cai Qiao Dong +7 位作者 Yong Han Bao-Hua Mao Hui Zhang Patrik G.Karlsson John ?hlund Ren-Zhong Tai Yi Yu Zhi Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第5期103-112,共10页
In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science,catalysis, environmental science and energy materials.Wi... In the past few decades, various surface analysis techniques find wide applications in studies of interfacial phenomena ranging from fundamental surface science,catalysis, environmental science and energy materials.With the help of bright synchrotron sources, many of these techniques have been further advanced into novel in-situ/operando tools at synchrotron user facilities, providing molecular level understanding of chemical/electrochemical processes in-situ at gas–solid and liquid–solid interfaces.Designing a proper endstation for a dedicated beamline is one of the challenges in utilizing these techniques efficiently for a variety of user's requests. Many factors,including pressure differential, geometry and energy of the photon source, sample and analyzer, need to be optimized for the system of interest. In this paper, we discuss the design and performance of a new endstation at beamline02 B at the Shanghai Synchrotron Radiation Facility for ambient pressure X-ray photoelectron spectroscopy studies.This system, equipped with the newly developed hightransmission HiPP-3 analyzer, is demonstrated to be capable of efficiently collecting photoelectrons up to 1500 eV from ultrahigh vacuum to ambient pressure of 20 mbar.The spectromicroscopy mode of HiPP-3 analyzer also enables detection of photoelectron spatial distribution with resolution of 2.8 ± 0.3 lm in one dimension. In addition,the designing strategies of systems that allow investigations in phenomena at gas–solid interface and liquid–solid interface will be highlighted through our discussion. 展开更多
关键词 AMBIENT pressure XPS SYNCHROTRON liquid- solid interface SPECTROMICROSCOPY
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
3
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
下载PDF
Pressure-relief and permeability-increase technology of high liquid–solid coupling blast and its application 被引量:3
4
作者 Hao Zhiyong Zhou Chao +2 位作者 Lin Baiquan Pang Yuan Li Ziwen 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期45-49,共5页
As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-... As for the coal seam with high stress,high gas and low permeability,a single technology cannot prevent the complex dynamic disasters.Because of this,the study proposes a new method of pressure-relief and permeability-increase technology of the high liquid–solid coupling blast.Through coal seam injection and charging structure change,the paper fully works out the dual functions of the water and explosion.Using the theoretical calculation,numerical simulation and physical experiments,we obtained that the initial blasting stress,displacement and overpressure of the liquid–solid coupling blast are much better than that of ordinary blasting.The technology has been used in the relative coal mine,and the application results show that the technique has effectively prevented the coal and gas outburst,which has a wide range of application. 展开更多
关键词 爆破应力 通透性 技术 应用 耦合 降压 爆炸超压 煤与瓦斯突出
下载PDF
Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
5
作者 吴旻 杨永琪 王垚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期476-481,共6页
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar... The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid. 展开更多
关键词 first-principles method molecular dynamics short-range order liquid aluminum
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments
6
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 Lithium metal batteries All-solid-state lithium metal battery Li dendrite solid electrolyte Interface
下载PDF
Synergistic interactions between the charge‐transport and mechanical properties of the ionic‐liquid‐based solid polymer electrolytes for solid‐state lithium batteries 被引量:1
7
作者 Ashutosh Agrawal Saeed Yari +3 位作者 Hamid Hamed Tom Gouveia Rongying Lin Mohammadhosein Safari 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期44-53,共10页
The performance sensitivity of the solid‐state lithium cells to the synergistic interactions of the charge‐transport and mechanical properties of the electrolyte is well acknowledged in the literature,but the quanti... The performance sensitivity of the solid‐state lithium cells to the synergistic interactions of the charge‐transport and mechanical properties of the electrolyte is well acknowledged in the literature,but the quantitative insights therein are very limited.Here,the charge‐transport and mechanical properties of a polymerized ionic‐liquid‐based solid electrolyte are reported.The transference number and diffusion coefficient of lithium in the concentrated solid electrolyte are measured as a function of concentration and stack pressure.The elastoplastic behavior of the electrolyte is quantified under compression,within a home‐made setup,to substantiate the impact of stack pressure on the stability of the Li/electrolyte interface in the symmetric lithium cells.The results spotlight the interaction between the concentration and thickness of the solid electrolyte and the stack pressure in determining the polarization and stability of the solid‐state lithium batteries during extended cycling. 展开更多
关键词 BATTERY DIFFUSION pressure solid state TRANSFERENCE
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
8
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
Dual-interlayers constructed by Ti_(3)C_(2)T_(x)/ionic-liquid for enhanced performance of solid garnet batteries 被引量:1
9
作者 Xi Wang Yong Wang +2 位作者 Yiyu Wu Yunmiao Fan Yang Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期47-55,I0002,共10页
Li(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability.However,the inherent rigidity and brittleness of LLZTO lead... Li(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO) solid garnet-type electrolyte has been widely reported due to its outstanding safety and electrochemical stability.However,the inherent rigidity and brittleness of LLZTO lead to poor contact with anode/cathode and the operation failure of full cells.Herein,the dual-interlayers are constructed as the fast interfacial ion-migration channel by using Ti_(3)C_(2)T_(x)(MXene,Txis-O,-OH,-F) with trace ionic liquid(IL),which promote the intimate contact between LLZTO and anode/cathode and suppress Li-dendrites growth.Notably,IL can wet the cathode to promote intimate interface contact and be decomposed into some inorganic compounds(such as Li3N,LiF,and Li2Sx),resulting in reduced interfacial resistance and fast Li-ion transportation.Consequently,in the prepared Li-symmetric cell,the interfacial resistance on the anode side plunges to 33.1 Ω cm^(-2),and stably maintains over 1000 h without short circuit at 0.05 mA cm^(-2).The full cell of Li|LiFePO4delivers a high initial capacity of 158.52 mA h g^(-1)and outstanding retention of 90.18% after 100 cycles at 60℃ and 0.2 C.Our work provides an efficient strategy to design dual-interlayers between LLZTO and anode/cathode for the interfacial modification to enhance the performance of solid garnet batteries. 展开更多
关键词 MXene composite Interfacial modification Garnet electrolyte solid battery Ion-transportation
下载PDF
Thermal rectification induced by Wenzel–Cassie wetting state transition on nano-structured solid–liquid interfaces
10
作者 李海洋 王军 夏国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期520-526,共7页
Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectificatio... Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectification phenomenon in an asymmetric solid–liquid–solid sandwiched system with a nano-structured interface.By using the non-equilibrium molecular dynamics simulations,the thermal transport through the solid–liquid–solid system is examined,and the thermal rectification phenomenon can be observed.It is revealed that the thermal rectification effect can be attributed to the significant difference in the interfacial thermal resistance between Cassie and Wenzel states when reversing the temperature bias.In addition,effects of the liquid density,solid–liquid bonding strength and nanostructure size on the thermal rectification are examined.The findings may provide a new way for designs of certain thermal devices. 展开更多
关键词 thermal rectification wetting transition interfacial thermal resistance solidliquid interfaces
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:1
11
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
A developed transient gas-liquid-solid flow model with hydrate phase transition for solid fluidization exploitation of marine natural gas hydrate reservoirs
12
作者 Geng Zhang Jun Li +3 位作者 Gong-Hui Liu Hong-Wei Yang Chao Wang Hong-Lin Huang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1676-1689,共14页
The multiphase flow characteristic is one of the most concerning problems during solid fluidization exploitation of marine natural gas hydrate reservoirs.In this research,a new transient gas-liquid-solid multiphase fl... The multiphase flow characteristic is one of the most concerning problems during solid fluidization exploitation of marine natural gas hydrate reservoirs.In this research,a new transient gas-liquid-solid multiphase flow model with hydrate phase transition was developed.Meanwhile,this model considered the coupling relationship among convective heat transfer,hydrate dynamic decomposition,and multi-phase flow.The model can simulate the change of flow pattern from solid-liquid to gas-liquid-solid flow,and describe the distribution character of volume fraction of phase,wellbore temperature and pressure,and hydrate decomposition rate during transportation.The simulation results indicate that the hydrate decomposition region in the wellbore gradually expands,but the hydrate decomposition rate gradually decreases during the solid fluidization exploitation of hydrate.When mining time lasts for 4 h,and the bottom hole pressure decreases by about 0.4 MPa.Increasing NaCl concentration in seawater helps expand hydrate decomposition regions and improves the wellbore hydrate decomposition rate.When the Nacl mass fraction in seawater reaches 15%,it will raise the hydrate decomposition regions to the whole wellbore.In addition,the higher the wellhead backpressure,the lower the decomposition area and decomposition rate of hydrate in the wellbore.When wellhead backpressure reaches 2 MPa,the volume fraction of gas near the wellhead will reduce to about 12%.This work is expected to provide a theoretical basis for the development of marine hydrate reservoirs. 展开更多
关键词 Gas-liquid-solid multiphase flow solid fluidization Hydrate dynamic decomposition Convective heat transfer
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
13
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Incombustible solid polymer electrolytes:A critical review and perspective
14
作者 Kai Wu Jin Tan +4 位作者 Zhenfang Liu Chenguang Bao Ao Li Qi Liu Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期264-281,I0007,共19页
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens... Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries. 展开更多
关键词 Non-flammable electrolyte solid polymer electrolyte High safety electrolyte solid state electrolyte solid state battery
下载PDF
Enhancing CO_(2) transport with plasma-functionalized ionic liquid membranes
15
作者 舒茹晨 许卉 +5 位作者 裴晨霄 王楠 刘新刚 侯剑源 袁圆 张仁熙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期74-81,共8页
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me... The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis. 展开更多
关键词 ionic liquids carbon dioxide supported ionic liquid membranes facilitated transport radiofrequency plasma
下载PDF
Underestimated Methane Emissions from Solid Waste Disposal Sites Reveal Missed Greenhouse Gas Mitigation Opportunities
16
作者 Yao Wang Chuanbin Zhou +6 位作者 Ziyang Lou Houhu Zhang Abid Hussain Liangtong Zhan Ke Yin Mingliang Fang Xunchang Fei 《Engineering》 SCIE EI CAS CSCD 2024年第5期12-15,共4页
1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills ... 1.Introduction Cities are responsible for approximately 70%of all anthropogenic greenhouse gas(GHG)emissions and about 60%of all anthropogenic methane(CH4)emissions[1,2].Solid waste disposal sites(including landfills and dumpsites),which are prevalent in global cities,emit CH4 generated from the anaerobic biodegradation of municipal solid waste(MSW).Notably,the proportions of CH4 emissions from disposal sites surpass 50%of the total CH4 emissions in some megalopolises[3].CH4 has a high global warming potential(GWP),being 28 times stronger than carbon dioxide(CO_(2))over a 100-year period and 80 times stronger over a 20-year period[4].Understanding and mitigating CH4 emissions from solid waste disposal sites is particularly pertinent and pressing,considering that the latest Synthesis Report from the Intergovernmental Panel on Climate Change(IPCC)emphasizes that the current pace of mitigation and adaptation policies and measures falls short of restraining global temperature rise to under 1.5℃ within the 21st century[4].More than 150 countries signed the Global Methane Pledge at the United Nations Climate Change Conference in Glasgow(COP26),which aims to reduce global annual CH4 emissions by 30%by 2030,compared with emissions in 2020[5]. 展开更多
关键词 LANDFILL solid restrain
下载PDF
Solid Bi_(2)O_(3)-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO_(2)
17
作者 Xiaoyan Wang Safeer Jan +1 位作者 Zhiyong Wang Xianbo Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期803-811,共9页
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met... CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction. 展开更多
关键词 BISMUTH carbon dioxide ELECTROCATALYSIS FORMATE solid electroreduction
下载PDF
Phosphotungstic acid ionic liquid for efficient photocatalytic desulfurization:Synthesis,application and mechanism
18
作者 Chenchao Hu Suhang Xun +5 位作者 Desheng Liu Junjie Zhang Minqiang He Wei Jiang Huaming Li Wenshuai Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期101-111,共11页
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu... An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value. 展开更多
关键词 Photocatalytic desulfurization EXTRACTION Ionic liquid CTAC-HPW
下载PDF
Method Development and Validation of the Simultaneous Analysis of Methylisothiazolinone, Methylchloroisothiazolinone, Benzisothiazolinone and Bronopol in Washing-Up Liquid
19
作者 Etienne Jooken Ruis Amery Boudewijn Meesschaert 《American Journal of Analytical Chemistry》 CAS 2024年第1期43-55,共13页
A method of analysis for the simultaneous determination of methylisothiazolinone (MI), methylchloroisothiazolinone (CMI), benzisothiazolinone (BIT) and Bronopol (BNP) in washing-up liquid was established. The method c... A method of analysis for the simultaneous determination of methylisothiazolinone (MI), methylchloroisothiazolinone (CMI), benzisothiazolinone (BIT) and Bronopol (BNP) in washing-up liquid was established. The method consisted of a gradient HPLC analysis at three different wavelengths. The four compounds could be analyzed with good precision and accuracy. 展开更多
关键词 PRESERVATIVES Analytical Validation METHYLISOTHIAZOLINONE Methylchloroisothiazolinone Benzisothiazolinone BRONOPOL HPLC Washing-Up liquid
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
20
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility CROSS-LINK solid polymer electrolyte
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部