期刊文献+
共找到28,947篇文章
< 1 2 250 >
每页显示 20 50 100
Transient liquid phase bonding of DD5 superalloy using a designed interlayer: microstructure and mechanical properties 被引量:1
1
作者 周昌杰 范骁乐 +3 位作者 朱立华 陈闯 贺建超 计红军 《China Welding》 CAS 2024年第2期1-10,共10页
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen... Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa. 展开更多
关键词 Ni-based superalloy powder transient liquid phase bonded joint shear strength
下载PDF
Noise-induced phase transition in the Vicsek model through eigen microstate methodology
2
作者 Yongnan Jia Jiali Han Qing Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期327-338,共12页
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior... This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density. 展开更多
关键词 Vicsek model phase TRANSITIONS EIGEN MICROSTATE method noise
下载PDF
A feedback control method for phase signal demodulation in fber-optic hydrophones
3
作者 Zhiqiang LIU Lei XIA +3 位作者 Qiangfeng LYU Bin WU Ronghua HUAN Zhilong HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期515-528,共14页
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign... In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers. 展开更多
关键词 feedback control method fiber-optic hydrophone acoustic signal detection phase signal
下载PDF
Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
4
作者 马赫阳 张万舟 +2 位作者 田彦婷 丁成祥 邓友金 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期386-400,共15页
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio... The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase. 展开更多
关键词 topological phase transition Ising-XY model Monte Carlo method half vortex
下载PDF
Time-dependent effects in transient liquid phase bonding of 304L and Cp-Ti using an Ag-Cu interlayer
5
作者 Saeed VAZIRIAN Mohammad MOSHKBAR BAKHSHAYESH Ali FARZADI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2237-2255,共19页
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ... One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints. 展开更多
关键词 diffusion brazing transient liquid phase bonding dissimilar material joints microstructural evolution mechanical properties grade 2 titanium
下载PDF
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
6
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Data-driven optimization study of the multi-relaxation-time lattice Boltzmann method for solid-liquid phase change 被引量:1
7
作者 Yanlin REN Zhaomiao LIU +1 位作者 Zixiao KANG Yan PANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期159-172,共14页
Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical per... Sharp phase interfaces and accurate temperature distributions are important criteria in the simulation of solid-liquid phase changes.The multi-relaxation-time lattice Boltzmann method(MRT-LBM)shows great numerical performance during simulation;however,the value method of the relaxation parameters needs to be specified.Therefore,in this study,a random forest(RF)model is used to discriminate the importance of different relaxation parameters to the convergence,and a support vector machine(SVM)is used to explore the decision boundary of the convergent samples in each dimensional model.The results show that the convergence of the samples is consistent with the sign of the decision number,and two types of the numerical deviations appear,i.e.,the phase mushy zone and the non-physical heat transfer.The relaxation parameters chosen on the decision boundary can further suppress the numerical bias and improve numerical accuracy. 展开更多
关键词 solid-liquid phase change lattice Boltzmann method(LBM) relaxation parameter random forest(RF) support vector machine(SVM)
下载PDF
Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery 被引量:1
8
作者 Gang Wu Feng Liu +3 位作者 Sijie Li Na Luo Zhiqiang Liu Yuqaing Li 《Journal of Renewable Materials》 SCIE EI 2023年第2期707-730,共24页
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac... The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%. 展开更多
关键词 Power battery thermal management phase change materials liquid cooling
下载PDF
RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW 被引量:4
9
作者 陈洪凯 唐红梅 陈野鹰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期399-408,共10页
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two... Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation. 展开更多
关键词 debris flow two-phase fluid velocities of solid phase and liquid phase calculation method VERIFICATION
下载PDF
Liquid–liquid phase transition in confined liquid titanium
10
作者 张迪 段云瑞 +6 位作者 郑培儒 马英杰 钱俊平 李志超 黄建 蒋妍彦 李辉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期391-398,共8页
We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liqu... We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space. 展开更多
关键词 TITANIUM layering transition liquidliquid phase transition confined space
下载PDF
Preparation of Microcapsules with Liquid Droplet Coalescence Method Followed by Phase Separation 被引量:3
11
作者 Yasushi Yokoyama Kiyomi Fuchigami +1 位作者 Yoshinari Taguchi Masato Tanaka 《Journal of Encapsulation and Adsorption Sciences》 2013年第3期93-97,共5页
Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were f... Novel preparation method of microencapsules was developed on the basis of the liquid coalescence method followed by phase separation. Oil droplets of limonene dissolving expanded polystyrene as a shell material were forced to collide and coalesce with the Isopar oil droplets of core material in the continuous wates phase. When two kinds of oil droplets are collided and coalesced with each other, expanded polystyrene dissolved in the limonene oil may be phase-separated in the oil droplets newly formed to form the microcapsule shell, because the Isopar oil was a poor solvent for expanded polystyrene but a good solvent for the limonene oil. In the experiment, the diameter (or number) of limonene oil droplets dissolving expanded polystyrene was mainly changed, because the coalescence frequency between the droplets is strongly dependent on the number of droplets. Favorable core shell types of microcapsules with the shell thickness from 1.0 to 5.0 μm were able to be prepared under all the experimental conditions adopted here. 展开更多
关键词 Core Shell MICROCAPSULE liquid DROPLET COALESCENCE method phase Separation LIMONENE Oil liquid-liquid Dispersion
下载PDF
Thermal and Electrical Properties of Liquid Metal Gallium During Phase Transition
12
作者 Xizu Wang Durga Venkata Maheswar Repaka +3 位作者 Ady Suwardi Qiang Zhu Jing Wu Jianwei Xu 《Transactions of Tianjin University》 EI CAS 2023年第3期209-215,共7页
Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity a... Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications. 展开更多
关键词 liquid metal GALLIUM Electrical conductivity Thermal conductivity Seebeck coefficients phase transition
下载PDF
Discussion on interface deformation and liquid breakup mechanism in vapor-liquid two-phase flow
13
作者 安祥 董波 +1 位作者 张雅瑾 周训 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期321-328,共8页
The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications.It is crucial to understand the corresponding mechanism correctly.The droplet... The interface deformation and liquid breakup in vapor-liquid two-phase flow are ubiquitous in natural phenomena and industrial applications.It is crucial to understand the corresponding mechanism correctly.The droplet and liquid ligament dynamic behaviors are investigated in this work by simulating three benchmark cases through adopting a three-dimensional(3D)phase-field-based lattice Boltzmann model,and vapor-liquid phase interface deformation and liquid breakup mechanisms including the capillary instability and end-pinching mechanism are analyzed.The analysis results show that the capillary instability is the driving mechanism of the liquid breakup and the secondary droplet production at a large Weber number,which is different from the Rayleigh-Taylor instability and Kelvin-Helmholtz instability characterizing the vapor-liquid interface deformation.In addition,as another liquid breakup mechanism,the end-pinching mechanism,which describes the back-flow phenomenon of the liquid phase,works at each breakup point,thus resulting in capillary instability on the liquid phase structure.In essence,it is the fundamental mechanism for the liquid breakup and the immanent cause of capillary instability. 展开更多
关键词 liquid breakup lattice Boltzmann method capillary instability end-pinching mechanism
下载PDF
Volumetric lattice Boltzmann method for pore-scale mass diffusionadvection process in geopolymer porous structures 被引量:1
14
作者 Xiaoyu Zhang Zirui Mao +6 位作者 Floyd W.Hilty Yulan Li Agnes Grandjean Robert Montgomery Hans-Conrad zur Loye Huidan Yu Shenyang Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2126-2136,共11页
Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti... Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications. 展开更多
关键词 Volumetric lattice Boltzmann method(VLBM) phase field method(PFM) Pore-scale diffusion-advection Nuclear waste treatment Porous media flow Graphics processing unit(GPU) parallelization
下载PDF
Development of a Rapid and Efficient Liquid Chromatography Method for Determination of Gibberellin A4 in Plant Tissue, with Solid Phase Extraction for Purification and Quantification 被引量:1
15
作者 Julia Medrano Macías Rahim Foroughbakhch Pournavab +1 位作者 Manuel Humberto Reyes-Valdés Adalberto Benavides-Mendoza 《American Journal of Plant Sciences》 2014年第5期573-583,共11页
A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithe... A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithelantha micromeris. Purification of GA4 was carried out by solid phase extraction (SPE), in Epithelantha micromeris. In the chromatography method was obtaining a retention time of 2.1 min, using Hypersil GOLD C-18 column (100 × 4.6 mm dim and size particle 5 μ), mobile phase 50/50 acetonitrile/water and a flow 1.0 ml/min. Detection was carried out by a UV detector set at 205 nm, and a quantization limit of 0.4 mg/L. The obtained correlation coefficient was 0.995. 展开更多
关键词 Dasyrilon cedrosanum Epithelantha micromeris PHYTOHORMONE Separation Plant Growth REGULATORS Reverse phase liquid Chromatography Solid phase Extraction
下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
16
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
下载PDF
Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
17
作者 吴旻 杨永琪 王垚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期476-481,共6页
The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations ar... The structural transformation from a liquid into a crystalline solid is an important subject in condensed matter physics and materials science. In the present study, first-principles molecular dynamics calculations are performed to investigate the structure and properties of aluminum during the solidification which is induced by cooling and compression. In the cooling process and compression process, it is found that the icosahedral short-range order is initially enhanced and then begin to decay, the face-centered cubic short-range order eventually becomes dominant before it transforms into a crystalline solid. 展开更多
关键词 first-principles method molecular dynamics short-range order liquid aluminum
下载PDF
Phase composition,conductivity,and sensor properties of cerium-doped indium oxide
18
作者 M.I.Ikim G.N.Gerasimov +2 位作者 V.F.Gromov O.J.Ilegbusi L.I.Trakhtenberg 《Nano Materials Science》 EI CAS CSCD 2024年第2期193-200,共8页
The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)... The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2). 展开更多
关键词 Cerium oxide Indium oxide NANOCOMPOSITE Hydrothermal method Cubic phase Rhombohedral phase Sensor response CONDUCTIVITY HYDROGEN Response/recovery time
下载PDF
Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field
19
作者 Haiyang WU Jiangfeng LOU +2 位作者 Biao ZHANG Yuntong DAI Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期337-354,共18页
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ... Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials. 展开更多
关键词 SELF-OSCILLATION stability analysis multi-scale method liquid crystal elastomer linear temperature field
下载PDF
Phase equilibrium data prediction and process optimizationin butadiene extraction process
20
作者 Baowei Niu Yanjie Yi +5 位作者 Yuwen Wei Fuzhen Zhang Lili Wang Li Xia Xiaoyan Sun Shuguang Xiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期1-12,共12页
In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene p... In response to the lack of reliable physical parameters in the process simulation of the butadiene extraction,a large amount of phase equilibrium data were collected in the context of the actual process of butadiene production by acetonitrile.The accuracy of five prediction methods,UNIFAC(UNIQUAC Functional-group Activity Coefficients),UNIFAC-LL,UNIFAC-LBY,UNIFAC-DMD and COSMO-RS,applied to the butadiene extraction process was verified using partial phase equilibrium data.The results showed that the UNIFAC-DMD method had the highest accuracy in predicting phase equilibrium data for the missing system.COSMO-RS-predicted multiple systems showed good accuracy,and a large number of missing phase equilibrium data were estimated using the UNIFAC-DMD method and COSMO-RS method.The predicted phase equilibrium data were checked for consistency.The NRTL-RK(non-Random Two Liquid-Redlich-Kwong Equation of State)and UNIQUAC thermodynamic models were used to correlate the phase equilibrium data.Industrial device simulations were used to verify the accuracy of the thermodynamic model applied to the butadiene extraction process.The simulation results showed that the average deviations of the simulated results using the correlated thermodynamic model from the actual values were less than 2%compared to that using the commercial simulation software,Aspen Plus and its database.The average deviation was much smaller than that of the simulations using the Aspen Plus database(>10%),indicating that the obtained phase equilibrium data are highly accurate and reliable.The best phase equilibrium data and thermodynamic model parameters for butadiene extraction are provided.This improves the accuracy and reliability of the design,optimization and control of the process,and provides a basis and guarantee for developing a more environmentally friendly and economical butadiene extraction process. 展开更多
关键词 Butadiene extraction phase equilibrium data Prediction methods Thermodynamic modeling Process simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部