The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above...The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.展开更多
Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply ...Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply systems are considered to be one of solutions. In this study, we aimed to conserve energy and reduce carbon dioxide emission of supermarket which installed a novel environment-friendly dispersed power. We focused the energy used by refrigerated cabinets. We built small scale model of supermarket which was equipped with dispersed power. From this scale model, the energy conservation effect of supercooling is from 10% to 25% during the summertime and intermediate time. At last, we found that when outside temperature is about 14 ℃ or more, supercooling was effective. In addition, since energy consumption of refrigerated cabinet is influenced by inside enthalpy, we controlled the inside air temperature and humidity by installing desiccant system and examined its effect.展开更多
In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field...In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.展开更多
针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换...针对外卖配送电动自行车换电柜布局不合理带来的部分换电柜利用率低与部分换电需求得不到及时满足的供需矛盾问题,本文通过聚类POI(Point of Interest)数据确定外卖配送起止点,并通过仿真模拟外卖骑手配送路径预测外卖配送电动自行车换电需求时空分布,构建换电柜运营商总成本最低和用户满意度最高的多目标换电柜选址定容模型,并以新乡市主城区为例,采用NSGA-II(Non-dominated Sorting Genetic Algorithm II)算法得到换电柜选址定容方案。研究结果表明:仿真模拟得出的换电需求时间分布预测值与实际值基本吻合,换电需求在11:00,14:00,17:00和20:00左右急剧增长,且11:00和14:00左右的换电需求量显著高于17:00和20:00左右的换电需求量,外卖骑手配送路径仿真模拟方法在换电需求预测上具有较高的预测精度;换电柜选址方案不能同时满足运营商和用户利益均为最优,用户满意度的提高需以增加运营商总成本为代价;同时,兼顾运营商和用户利益的新乡市主城区外卖配送电动自行车换电柜最佳建设数量为26,其中,容量为11的换电柜11个,容量为22的换电柜8个,容量为33的换电柜7个;新乡市主城区应按照备选点编号15-7-19-17依次新增换电柜至30个,此时,用户满意度最大,若继续增加换电柜建设数量,只会增加运营商总成本。展开更多
基金sponsored by the Science and Technology Program of State Grid Corporation of China(4000-202355090A-1-1ZN)。
文摘The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.
文摘Since the nuclear disaster occurred from huge earthquake in Japan 2011, Japanese energy generation system has been expected to prioritize safety and trustworthiness. To meet this requirement, distributed power supply systems are considered to be one of solutions. In this study, we aimed to conserve energy and reduce carbon dioxide emission of supermarket which installed a novel environment-friendly dispersed power. We focused the energy used by refrigerated cabinets. We built small scale model of supermarket which was equipped with dispersed power. From this scale model, the energy conservation effect of supercooling is from 10% to 25% during the summertime and intermediate time. At last, we found that when outside temperature is about 14 ℃ or more, supercooling was effective. In addition, since energy consumption of refrigerated cabinet is influenced by inside enthalpy, we controlled the inside air temperature and humidity by installing desiccant system and examined its effect.
基金supported by the CEPRI project“Key Technologies for Sparse Acquisition of Power Equipment State Sensing Data”(AI83-21-004)National Key R&D Program of China(2020YFB0905900).
文摘In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.