Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of vario...Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.展开更多
The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabili...The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.展开更多
Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carb...Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carbon nanotubes (MWCNT) were oxidized in KMnO4 acidic suspension. Carboxyl groups on the surface oxidized MWCNT were reacted with primary amide group of PMMA-co-PMAA copolymer in MEK solution under ultrasound to form polymer brush on the surface of MWCNT. With the help of TG analyses the amount of covalently grafted PMMA-co-PMAA copolymer onto MWCNT surface was determined as ?47 wt%. TEM analyses identified thin co-polymer layer adhered onto MWCNT surface with average thickness ?5 nm.展开更多
We proposed a modified dissipative particle dynamics simulation model by which one can effectively avoid the bond-crossing problem, and investigated the effect of solvent size on the structural properties of bottle-br...We proposed a modified dissipative particle dynamics simulation model by which one can effectively avoid the bond-crossing problem, and investigated the effect of solvent size on the structural properties of bottle-brush polymers in dilute solution on the basis of this model. It was found that with the increase of solvent size, the radius of the gyration of the bottle-brush polymer decreases considerably in the athermal solvent but increases in the selective solvent favoring the backbone, respectively.展开更多
The aim of this study was to develop self-healable and robust elect roconductive film based on polyaniline copolymer for application as electrode in flexible supercapacitor.For this purpose,the electroconductive polym...The aim of this study was to develop self-healable and robust elect roconductive film based on polyaniline copolymer for application as electrode in flexible supercapacitor.For this purpose,the electroconductive polymer brushes(EPB)was elaborated.The synthesis of EPB is based on graft polymerizations of acrylamide(AAm)on poly(vinyl alcohol)(PVA)with formation of PVA-PAAm polymer brush and subsequent graft copolymerization of aniline and p-phenylenediamine on PVA-PAAm resulting in formation of EPB with electroconducting copoly(aniline-co-pphenylenediamine)(PAPh DA).It was found that the ratio between PVA and PAAm at the first stage greatly influence the electrochemical performance of the EPBs.Electroconducting films were prepared by casting of EPB solution with subsequent drying.Investigation of electrical current distribution through the film with AFM reveal more uniform distribution of PAPhDA in EPB in comparison with reference PVA-PAPhDA and PAAm-PAPhDA samples.It was demonstrated that mechanical cha racteristics and electrical conductivity values of films restore at large extent after curring and self-healing under optimal relative humidity level(58%).The flexile supercapacitor cell with EPB film electrodes demon strate specific capacitance 602 mF·cm^(-2)at the current density of 1 mA·cm^(-2)and retention 94%of initial capacitance after 5000 charge/discharge cycles.展开更多
We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes,as well as a pair of charged polymer brushes in the strongly compressed regime.The results of the mole...We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes,as well as a pair of charged polymer brushes in the strongly compressed regime.The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces,shear forces,viscosities and friction coefficients as a function of separation between brushes,are presented in the study.The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime,and the dependence of viscosity on the separation distance show the similar power law of neutral brushes.Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale.Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads.However,a maximum of friction coefficients is observed for polyelectrolyte brushes,which is in contrast to the neutral brushes with monotonical dependence.展开更多
Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor c...Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor compatibility between nanomaterials and base oil limits their further applications.In this work,we demonstrated oil-soluble poly(lauryl methacrylate)(PLMA)brushes-grafted metal-organic frameworks nanoparticles(nanoMOFs)as lubricating oil additives that can achieve efficient friction reduction and anti-wear performance.Macroinitiators were synthesized by free-radical polymerization,which was coordinatively grafted onto the surface of the UiO-67 nanoparticles.Then,PLMA brushes were grown on the macroinitiator-modified UiO-67 by surface-initiated atom transfer radical polymerization,which greatly improved the lipophilic property of the UiO-67 nanoparticles and significantly enhanced the colloidal stability and long-term dispersity in both non-polar solvent and base oil.By adding UiO-67@PLMA nanoparticles into the 500 SN base oil,coefficient of friction and wear volume reductions of 45.3%and 75.5%were achieved due to their excellent mechanical properties and oil dispersibility.Moreover,the load-carrying capacity of 500 SN was greatly increased from 100 to 500 N by the UiO-67@PLMA additives,and their excellent tribological performance was demonstrated even at a high friction frequency of 65 Hz and high temperature of 120℃.Our work highlights oil-soluble polymer brushes-functionalized nanoMOFs for highly efficient lubricating additives.展开更多
Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-bu...Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-butyl methacrylate) (PtBMA) was polymerized from polystyrene latex (PSL) surface by ATRP to give PtBMA-grafted PSL (PSL-PtBMA). Particle monolayer was formed at air-water and air-acidic water interfaces and the monolayer characteristics were compared by π-A isotherm measurements, SEM observations, and contact angle measurements. π-A isotherms, in particular, indicates that the interaction between polymer chains become stronger by changing the subphase condition, which suggests that anisotropicparticle monolayer formation.展开更多
Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications.However,current differentiation surfaces still s...Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications.However,current differentiation surfaces still struggle with challenges such as complex microstructure design,a limited detection range,and poor stability.In this study,we present a new platform for droplet discrimination achieved through a combination of groove structures and a liquid-like polydimethylsiloxane(PDMS)brushes coating.The PDMS brushes coating exhibits excellent stability and low adhesion across a wide range of liquids with surface tensions ranging from 27.5 to 72.8 mN/m,while the groove structure provides distinct energy barriers for droplet sliding.Consequently,liquids with varying surface tensions can be effectively discriminated,as evidenced by the increased sliding angles(SAs)observed as liquids with lower surface tension moving across the groove.Furthermore,we utilized a three dimensional(3D)model of the droplet developed using Surface Evolver,and conducted energy variation calculations during droplet sliding across the groove to analyze the SA differences among liquids with different surface tensions.Additionally,we proposed two simple differentiation platforms that successfully demonstrated effective droplet discrimination.This work introduces a novel strategy for droplet discrimination,offering innovative ideas for the design of functional surfaces.These findings may potentially be applied in other fields involving droplet manipulation,such as droplet-based microchemical reactions and bio-detection.展开更多
To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers re...To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.展开更多
The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer im...The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc., the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to es- tablish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process.展开更多
Langevin dynamics simulations were conducted to study the collapse of grafted partially charged 4-arm star chains onto the oppositely charged grafting electrode in the presence of trivalent salt coions.Simulation resu...Langevin dynamics simulations were conducted to study the collapse of grafted partially charged 4-arm star chains onto the oppositely charged grafting electrode in the presence of trivalent salt coions.Simulation results reveal that the average charge fraction of the grafted star chains and the salt concentration play critical roles in the competitive adsorption of charged monomers and trivalent salt coions onto the oppositely charged electrode.For grafted star chains with relatively high charge fraction,charged monomers are the dominant species collapsing on the oppositely charged electrode with the emergence of charge reversal on the grafting electrode.At a low charge fraction such that the total amount of charges on a grafted star molecule is comparable to that of a trivalent salt coion,trivalent salt coions absorb more strongly onto the electrode than grafted stars even at very low salt concentration.It is found that at relatively low charge fraction of star chains,the addition of trivalent salt coions does not lead to charge overcompensation of the surface charges on the grafting electrode.The stretching of star brushes under an electric field in the presence of trivalent salt coions was also briefly investigated.展开更多
基金supported by the Fundamental Research Funds for the China Postdoctoral Science Foundation(No.2022M710611)the S&T Special Program of Huzhou(Nos.2021GZ10 and 2021GZ51)+5 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2021ZYD0046)the Chengdu Science and Technology Bureau(No.2021-GH02-00105-HZ)the Sichuan Outstanding Young Scholars Foundation(No.2021JDJQ0013)the Sichuan Science and Technology Program Foundation(Nos.2021JDRC0016 and 2023JDRC0082)the“Medical and Industrial Cross Foundation”of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital(No.ZYGX2021YGLH207)the“Oncology Medical Engineering Innovation Foundation”project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital(No.ZYGX2021YGCX009).
文摘Liquid-like polymer lubricating surfaces(LPLSs)are solid substrates with highly flexible polymer chains grafted via covalent bonds.This unique modification enables ultralow contact-angle hysteresis,repellency of various liquids and bulk ice,and stability.The distinctive wettability and universality of LPLSs have potential applications in liquid motion,biological detection,and environmental protection.In this review,we summarize the mechanisms,preparation,and applications of LPLSs.We discuss the wettability and lubrication mechanisms of liquid droplets on LPLSs.We then categorize LPLS fabrication into“grafted onto”and“grafted from”groups,depending on the type of polymer.We highlight representative applications with recent developments in anti-complex liquid,anti-icing,anti-biological adhesions,biosensing,and photocatalytic activity.Finally,we discuss future challenges and outlooks for LPLSs.
基金supported by the National Natural Science Foundation of China(grant nos.52025132,21975209,22275156,21621091,22021001,22005255,and T2241022)the National Science Foundation of Fujian Province of China(grant no.2022J02059)+4 种基金the Fundamental Research Funds for the Central Universities of China(grant nos.20720220019 and 20720220085)the 111 Project(grant nos.B17027 and B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(grant no.RD2022070601)the State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(grant no.KFKT202221)the Tencent Foundation(The XPLORER PRIZE).
文摘The capture of circulating tumor cells(CTCs)is of great significance in reducing cancer mortality and complications.However,the nonspecific binding of proteins and white blood cells(WBCs)weakens the targeting capabilities of the capture surfaces,which critically hampers the efficiency and purity of the captured CTCs.Herein,we propose a liquid-like interface design strategy that consists of liquid-like polymer chains and anti-EpCAM modification processes for high-purity and high-efficiency capture of CTCs.The dynamic flexible feature of the liquid-like chains endows the modified surfaces with excellent antiadhesion property for proteins and blood cells.The liquid-like surfaces can capture the target CTCs and show high cell viability due to the environmentfriendly surface modification processes.When liquid-like surface designs were introduced in the deterministic lateral displacement(DLD)-patterned microfluidic chip,the nonspecific adhesion rate of WBCs was reduced by more than fivefold compared to that in the DLD chip without liquid-like interface design,while maintaining comparable capture efficiency.Overall,this strategy provides a novel perspective on surface design for achieving high purity and efficient capture of CTCs.
文摘Poly(methyl methacrylate)/poly(methacrylamide) copolymer (PMMA-co-PMAA) was synthesized by a free radical copolymerization of MMA and MAA monomers in methylethyl ketone using AIBN as radical initiator. Multi-wall carbon nanotubes (MWCNT) were oxidized in KMnO4 acidic suspension. Carboxyl groups on the surface oxidized MWCNT were reacted with primary amide group of PMMA-co-PMAA copolymer in MEK solution under ultrasound to form polymer brush on the surface of MWCNT. With the help of TG analyses the amount of covalently grafted PMMA-co-PMAA copolymer onto MWCNT surface was determined as ?47 wt%. TEM analyses identified thin co-polymer layer adhered onto MWCNT surface with average thickness ?5 nm.
基金Supported by the National Science Foundation of China(Nos.20774036, 50930001)the Program for New Century Excellent Talents in University and Fok Ying Tung Education Foundation(No.114018)
文摘We proposed a modified dissipative particle dynamics simulation model by which one can effectively avoid the bond-crossing problem, and investigated the effect of solvent size on the structural properties of bottle-brush polymers in dilute solution on the basis of this model. It was found that with the increase of solvent size, the radius of the gyration of the bottle-brush polymer decreases considerably in the athermal solvent but increases in the selective solvent favoring the backbone, respectively.
文摘The aim of this study was to develop self-healable and robust elect roconductive film based on polyaniline copolymer for application as electrode in flexible supercapacitor.For this purpose,the electroconductive polymer brushes(EPB)was elaborated.The synthesis of EPB is based on graft polymerizations of acrylamide(AAm)on poly(vinyl alcohol)(PVA)with formation of PVA-PAAm polymer brush and subsequent graft copolymerization of aniline and p-phenylenediamine on PVA-PAAm resulting in formation of EPB with electroconducting copoly(aniline-co-pphenylenediamine)(PAPh DA).It was found that the ratio between PVA and PAAm at the first stage greatly influence the electrochemical performance of the EPBs.Electroconducting films were prepared by casting of EPB solution with subsequent drying.Investigation of electrical current distribution through the film with AFM reveal more uniform distribution of PAPhDA in EPB in comparison with reference PVA-PAPhDA and PAAm-PAPhDA samples.It was demonstrated that mechanical cha racteristics and electrical conductivity values of films restore at large extent after curring and self-healing under optimal relative humidity level(58%).The flexile supercapacitor cell with EPB film electrodes demon strate specific capacitance 602 mF·cm^(-2)at the current density of 1 mA·cm^(-2)and retention 94%of initial capacitance after 5000 charge/discharge cycles.
基金supported by the National Natural Science Foundation of China (Nos. 21574139 and 21973103)
文摘We present the results of molecular dynamics simulations of steady shear between a pair of neutral polymer brushes,as well as a pair of charged polymer brushes in the strongly compressed regime.The results of the molecular dynamic simulations of neutral and polyelectrolyte brushes in implicit solvent including normal forces,shear forces,viscosities and friction coefficients as a function of separation between brushes,are presented in the study.The comparison of the simulation results of neutral and charged brushes shows that the charged brushes is in the quasi-neutral regime,and the dependence of viscosity on the separation distance show the similar power law of neutral brushes.Our simulation results confirm that the implicit solvent simulations of polyelectrolyte brushes that ignore hydrodynamics interaction are in agreement with the scaling predictions qualitatively because of screening of hydrodynamic interaction and long-range electrostatic interactions on the correlation length scale.Both of neutral and charged brushes show the lubrication properties that the friction coefficient decreases with the separation decreases at enough large loads.However,a maximum of friction coefficients is observed for polyelectrolyte brushes,which is in contrast to the neutral brushes with monotonical dependence.
基金the Research Fund of State Key Laboratory of Solidification Processing(NPU)(2022-QZ-04)the National Natural Science Foundations of China(52071270).
文摘Nanomaterials as lubricating oil additives have attracted significant attention because of their designable composition and structure,suitable mechanical property,and tunable surface functionalities.However,the poor compatibility between nanomaterials and base oil limits their further applications.In this work,we demonstrated oil-soluble poly(lauryl methacrylate)(PLMA)brushes-grafted metal-organic frameworks nanoparticles(nanoMOFs)as lubricating oil additives that can achieve efficient friction reduction and anti-wear performance.Macroinitiators were synthesized by free-radical polymerization,which was coordinatively grafted onto the surface of the UiO-67 nanoparticles.Then,PLMA brushes were grown on the macroinitiator-modified UiO-67 by surface-initiated atom transfer radical polymerization,which greatly improved the lipophilic property of the UiO-67 nanoparticles and significantly enhanced the colloidal stability and long-term dispersity in both non-polar solvent and base oil.By adding UiO-67@PLMA nanoparticles into the 500 SN base oil,coefficient of friction and wear volume reductions of 45.3%and 75.5%were achieved due to their excellent mechanical properties and oil dispersibility.Moreover,the load-carrying capacity of 500 SN was greatly increased from 100 to 500 N by the UiO-67@PLMA additives,and their excellent tribological performance was demonstrated even at a high friction frequency of 65 Hz and high temperature of 120℃.Our work highlights oil-soluble polymer brushes-functionalized nanoMOFs for highly efficient lubricating additives.
基金This work was financially supported by a grant-in-aid(No.19750099,24850015)from JSPS.
文摘Fabrication of anisotropic material is one of the important topics and we examined to introduce “anisotropic” nature by spreading polymer-grafted particle on the medium with polymer-reactive potential. Poly (tert-butyl methacrylate) (PtBMA) was polymerized from polystyrene latex (PSL) surface by ATRP to give PtBMA-grafted PSL (PSL-PtBMA). Particle monolayer was formed at air-water and air-acidic water interfaces and the monolayer characteristics were compared by π-A isotherm measurements, SEM observations, and contact angle measurements. π-A isotherms, in particular, indicates that the interaction between polymer chains become stronger by changing the subphase condition, which suggests that anisotropicparticle monolayer formation.
基金supported by the National Natural Science Foundation of China(NSFC,22075061)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(2022TS37)。
文摘Discriminating between different liquids using surfaces with special wettability holds significant implications for both fundamental research and practical applications.However,current differentiation surfaces still struggle with challenges such as complex microstructure design,a limited detection range,and poor stability.In this study,we present a new platform for droplet discrimination achieved through a combination of groove structures and a liquid-like polydimethylsiloxane(PDMS)brushes coating.The PDMS brushes coating exhibits excellent stability and low adhesion across a wide range of liquids with surface tensions ranging from 27.5 to 72.8 mN/m,while the groove structure provides distinct energy barriers for droplet sliding.Consequently,liquids with varying surface tensions can be effectively discriminated,as evidenced by the increased sliding angles(SAs)observed as liquids with lower surface tension moving across the groove.Furthermore,we utilized a three dimensional(3D)model of the droplet developed using Surface Evolver,and conducted energy variation calculations during droplet sliding across the groove to analyze the SA differences among liquids with different surface tensions.Additionally,we proposed two simple differentiation platforms that successfully demonstrated effective droplet discrimination.This work introduces a novel strategy for droplet discrimination,offering innovative ideas for the design of functional surfaces.These findings may potentially be applied in other fields involving droplet manipulation,such as droplet-based microchemical reactions and bio-detection.
基金financially supported by the National Natural Science Foundation of China (No.22263002)the “Overseas 100 Talents Program” of Guangxi Higher Education。
文摘To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.
基金Project supported by the Outstanding Youth Program of Shanghai Municipal Commission of Education(No.04YQHB088)the Shanghai Leading Academic Discipline Project(No.Y0103).
文摘The paper is devoted to investigations on nanomechanical behaviors of biochips in label-free biodetections. The chip consists of Si-layer, Ti-layer, Au-layer and single-strand DNA (ssDNA) molecular brush biolayer immobilized by self-assembly technology of thiol group. Unlike previous viewpoints, such as force-bending, entropy-bending and curvature electricity effect, etc., the piezoelectric effect of the biopolymer brush layer is viewed as the main factor that induces nanomechanical bending of biochips, and a classical macroscopic piezoelectric constitutive relation is used to describe the piezoelectric effect. A new laminated cantilever beam model with a piezoelectric biolayer in continuum mechanics, the linearized Poisson-Boltzmann equation in statistical mechanics and the scaling method in polyelectrolyte brush theory are combined to es- tablish a relationship between the nanomechanical deflection of DNA chips and the factors such as nanoscopic structural features of ssDNA molecules, buffer salt concentration, macroscopic mechanical/piezoelectric parameters of DNA chips etc. Curve fitting of experimental data shows that the sign of the piezoelectric constant of the biolayer may control the deflection direction of DNA chips during the packaging process.
基金supported by the National Natural Science Foundation of China (No.21774067)the support from K. C. Wong Magna Fund in Ningbo University。
文摘Langevin dynamics simulations were conducted to study the collapse of grafted partially charged 4-arm star chains onto the oppositely charged grafting electrode in the presence of trivalent salt coions.Simulation results reveal that the average charge fraction of the grafted star chains and the salt concentration play critical roles in the competitive adsorption of charged monomers and trivalent salt coions onto the oppositely charged electrode.For grafted star chains with relatively high charge fraction,charged monomers are the dominant species collapsing on the oppositely charged electrode with the emergence of charge reversal on the grafting electrode.At a low charge fraction such that the total amount of charges on a grafted star molecule is comparable to that of a trivalent salt coion,trivalent salt coions absorb more strongly onto the electrode than grafted stars even at very low salt concentration.It is found that at relatively low charge fraction of star chains,the addition of trivalent salt coions does not lead to charge overcompensation of the surface charges on the grafting electrode.The stretching of star brushes under an electric field in the presence of trivalent salt coions was also briefly investigated.