The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of light...The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.展开更多
The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that...The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that there exist lower friction coefficients between OTS SAMs and Ti, Ni and Cu films deposited on GCr15 steel balls than those between OTS SAMs and GCr15 steel ball. The friction coefficient between OTS SAMs and Ti film is the largest, and the friction coefficient between OTS SAMs and Cu film is the least in these three films, which depends on the intrinsic characteristics of the materials. The friction coefficients between OTS SAMs and GCr15 steel ball and three nanometer films increase with the sliding velocity increasing, which can be explained by the relaxation characteristics of OTS molecules.展开更多
Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc ama...Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc amalgam) system was used.The mass transfer coefficients of indicator ions as a function of bubble parameters have been determined.The experimental results show satisfactory agreement with the mass transfer model proposed Previously.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic f...In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic force microscopy(AFM),fluorescence imaging and electrochemistry were employed to characterize the surface.The results showed that CdSe/ZnS QDs were immobilized on the surface of SAM/Au successfully.Based on this method,the fluorescence of the QDs on the SAM/Au was monitored on-line.展开更多
As a highly powerful and sensitive tool,surface enhanced Raman scattering(SERs)has attracted extensive attention in quantification analysis.However,the strong dependence of SERS signal on the detailed local nanostruct...As a highly powerful and sensitive tool,surface enhanced Raman scattering(SERs)has attracted extensive attention in quantification analysis.However,the strong dependence of SERS signal on the detailed local nanostructure makes quantitative SERS analysis suffer from difficulties in controlling the uniformity of nanoscale hot spots and the inefficiency of placing the targeted molecules in prefabricated hot spots.展开更多
Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,...Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.展开更多
Host–guest molecular recognition at the liquid–liquid interface endows the interface with unique properties,including stimuli-responsiveness and self-regulation,due to the dynamic and reversible nature of non-covale...Host–guest molecular recognition at the liquid–liquid interface endows the interface with unique properties,including stimuli-responsiveness and self-regulation,due to the dynamic and reversible nature of non-covalent interactions.Increasing research efforts have been put into the preparation of supramolecular interfacial systems such as films and microcapsules by integrating functional components(e.g.,colloidal particles,polymers)at the interface,providing tremendous opportunities in the areas of encapsulation,delivery vehicles,and biphasic reaction systems.In this review,we summarize recent progress in supramolecular interfacial systems assembled by host–guest chemistry,and provide an overview of the fabrication process,functions,and promising applications of the resultant constructs.展开更多
Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in...Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.展开更多
We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)w...We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)with near-infrared(NIR)luminescence.The formation of Ag2S QDs occurs at the interface of microdroplets,and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution.Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation.The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging,and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor.This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.展开更多
Aligned arrays of semiconducting carbon nanotubes(s-CNTs)with high homogenous density and orientation are urgently needed for high-performance carbon-based electronics.Herein,a length-controlled approach using combine...Aligned arrays of semiconducting carbon nanotubes(s-CNTs)with high homogenous density and orientation are urgently needed for high-performance carbon-based electronics.Herein,a length-controlled approach using combined technologies was developed to regulate the s-CNT length and reduce the length distribution.The impact of different lengths and length distributions was studied during aligned self-assembly on a liquid–liquid confined interface was investigated.The results show that short s-CNTs with a narrow distribution have the best alignment uniformity over the large scale.The optimized and aligned s-CNT array can reach a density as high as 100 CNTs·μm−1 on a 4-inch wafer.The field-effect transistor(FET)performance of these optimized s-CNT arrays was 64%higher than arrays without length-control.This study clarified that rational control of s-CNTs with desired length and length distribution on the aligned self-assembly process within the liquid–liquid confined interface.The results illustrate a solid foundation for the application of emerging carbon-based electronics.展开更多
Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structur...Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.展开更多
Micro/nanobubbles play an essential role in ultrasound-based biomedical applications.Here,a green and simple method to fabricate micro/nanobubbles was developed by the temperature-regulated self-assembly of lipids in ...Micro/nanobubbles play an essential role in ultrasound-based biomedical applications.Here,a green and simple method to fabricate micro/nanobubbles was developed by the temperature-regulated self-assembly of lipids in the presence of free bubbles.The self-assembly mechanism of lipids interacting with gas-water interfaces was investigated,and the ultrasound imaging of the obtained lipid-encapsulated bubbles(LBs)was further confirmed.Above the phase transition temperature(Tm),fluid lipids transform from vesicles to micelles,and further assemble to the free bubbles interface to be a compressed monolayer,resulting in lipid shelled microbubbles.Cooling below 7m induces the lipid shell to glassy state and stables the LBs.Moreover,increasing the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000](DSPE-PEG2K)content in lipids formulation can further manipulate the shell curvature and reduce the LBs size into nanobubbles.LBs with diameters of 1.68±0.11 pm,704±7 nm and 208±6 nm were successfully prepared.The in vitro and in vivo ultrasound imaging results showed that all of the LBs had excellent echogenicity.The nanosized LBs revealed elongated imaging duration time and greater microvascular details for the liver tissue.Avoiding the organic solvent and complicated multiple preparation process,this method has great potential in construction of various multifunctional micro/nanobubbles with size control for theranostic applications.展开更多
Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review s...Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.展开更多
As Interface mediated self-assembly of nanocrystals provide excellent strategy for sensing,catalysis or photonics,the construction of innovative interfaces and development of versatile strategies for nanocrystal synth...As Interface mediated self-assembly of nanocrystals provide excellent strategy for sensing,catalysis or photonics,the construction of innovative interfaces and development of versatile strategies for nanocrystal synthesis are urgently needed.Herein,latent fingerprints(LFPs),the most common markers for human identity,are used as naturally accessible interface for organization of graphene isolated nanocrystals(GINs).Excitingly,the selective adsorption of GINs on lipidic ridge provides a universal approach for the in-situ construction of the plasmonic arrays.Such system with intrinsic chrominance and Raman signal enables the high resolution colorimetric and surfaced-enhanced Raman spectroscopy(SERS)dual-mode imaging,which can detail the structures of the LFPs from 1st to 3rd level even the LFPs are shielded.Furthermore,the interface can be constructed on diverse materials by a simple finger-pressing process and the densely packed arrays can serve as superior SERS substrate for label-free,non-invasive acquisition of molecule information especially residues in LFPs.The combination of chemical composition with detailed structures efficiently recognizes the human identity and could help link it to a crime scene.Overall,the LFPs can act as natural platform for interface mediated localized assembly and personalized information acquisition for forensic science or precise medicine.展开更多
Block copolymers(BCPs)can automatically assemble into various regulated nanoparticles when they are confined within the emulsion droplet be-cause of the structural frustration of polymer chains and the soft template e...Block copolymers(BCPs)can automatically assemble into various regulated nanoparticles when they are confined within the emulsion droplet be-cause of the structural frustration of polymer chains and the soft template effect of the oil/water interface.In the past few years,great efforts have been made to regulate the morphologies of the resulting BCP particles.In this review article,various strategies for tuning oil/water interfacial prop-erties to engineer the as-formed BCP particles were summarized.Then,the comprehensive scenarios of the applications of the resulting BCP parti-cles were discussed.Finally,the future tendency and challenge of the self-assembly of BCPs confined in emulsion droplet were suggested.展开更多
Despite the rapidly increased power conversion efficiency(PCE)of perovskite solar cells(PVSCs),it is still quite challenging to bring such promising photovoltaic technology to commercialization.One of the challenges i...Despite the rapidly increased power conversion efficiency(PCE)of perovskite solar cells(PVSCs),it is still quite challenging to bring such promising photovoltaic technology to commercialization.One of the challenges is the upscaling from small-sized lab devices to large-scale modules or panels for production.Currently,most of the efficient inverted PVSCs are fabricated on top of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA),which is a commonly used hole-transporting material,using spin-coating method to be incompatible with large-scale film deposition.Therefore,it is important to develop proper coating methods such as blade-coating or slot-die coating that can be compatible for producing large-area,high-quality perovskite thin films.It is found that due to the poor wettability of PTAA,the blade-coated perovskite films on PTAA surface are often inhomogeneous with large number of voids at the buried interface of the perovskite layer.To solve this problem,self-assembled monolayer(SAM)-based hole-extraction layer(HEL)with tunable headgroups on top of the SAM can be modified to provide better wettability and facilitate better interactions with the perovskite coated on top to passivate the interfacial defects.The more hydrophilic SAM surface can also facilitate the nucleation and growth of perovskite films fabricated by blade-coating methods,forming a compact and uniform buried interface.In addition,the SAM molecules can also be modified so their highest occupied molecular orbital(HOMO)levels can have a better energy alignment with the valence band maxima(VBM)of perovskite.Benefitted by the high-quality buried interface of perovskite on SAM-based substrate,the champion device shows a PCE of 18.47%and 14.64%for the devices with active areas of 0.105 cm^(2) and 1.008 cm^(2),respectively.In addition,the SAM-based device exhibits decent stability,which can maintain 90%of its initial efficiency after continuous operation for over 500 h at 40℃ in inert atmosphere.Moreover,the SAM-based perovskite mini-module exhibits a PCE of 14.13%with an aperture area of 18.0 cm^(2).This work demonstrates the great potential of using SAMs as efficient HELs for upscaling PVSCs and producing high-quality buried interface for large-area perovskite films.展开更多
Au hierarchical architectures with special morphology and structures are strongly desired in varied applications.Herein,a simple synthesis method was developed for the one-step preparation of Au micronails(MNs)at the ...Au hierarchical architectures with special morphology and structures are strongly desired in varied applications.Herein,a simple synthesis method was developed for the one-step preparation of Au micronails(MNs)at the planar liquid-liquid interface under mild conditions.The well-defined Au MNs were grown and constructed at CHCl_(3)-H_(2)O interface at room temperature using aniline in CHCl_(3)as reducing agent and HAuCl_(4)in H_(2)O as precursor and no surfactant or seed is required.The intriguing Au MNs with rough surface consist of big heads and thin rods,just like iron nails in outline.Furthermore,through simple changing the reagent concentrations,the length and surface roughness of Au MNs can be adjusted conveniently.The effects of a series of factors on the morphology and structure of the products are studied in detail.With p-aminothiophenol as a molecular probe,the as-obtained Au MNs all exhibit dramatically improved surface enhanced Raman scattering sensitivity and high reproducibility,the enhancement factor and limit of detection of Au MNs are 5.4×10^(5)and 1.0×10^(-10),respectively.展开更多
Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the t...Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the tail groups at the SAM-ambient interface,but are also largely defined by their structure.In its turn,the latter parameter results from a complex interplay of the structural forces and a variety of other factors,including so called odd-even effects,viz.dependence of the SAM structure and properties on the parity of the number(odd or even)of individual building blocks in the backbone of the SAM constituents.The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111)and Ag(111),in which,in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the monolayers,one observes a pronounced dependence of molecular inclination and,consequently,the packing density of the SAM-forming molecules on the parity of number of methylene units in the alkyl linker.Here we review the properties of the above systems as well as address fundamental reasons behind the odd-even effects,including the existence of a so-called bending potential,which is frequently disregarded in analysis of the structure-building forces.The generality of the odd-even effects in SAMs is additionally supported by the recent data for SAMs on GaAs,scanning tunneling microscopy data for SAMs on Ag(111),and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111)and Ag(111).The implications of these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface,structural perfection,polymorphism,temperature-driven phase transitions,and SAM stability toward such factors as ionizing radiation,exchange reaction,and electrochemical desorption are discussed.These implications place the odd-even effects as an important tool for the design of functional SAMs in context of specific applications.展开更多
I. INTRODUCTIONStudies on the electrochemical phenomena at the liquid-liquid interface are a developing area in electrochemistry and electroanalytical chemistry. The exploration for new ion transfer systems is very im...I. INTRODUCTIONStudies on the electrochemical phenomena at the liquid-liquid interface are a developing area in electrochemistry and electroanalytical chemistry. The exploration for new ion transfer systems is very important in the development of this area. Dyes are a large group of reagents used widely in analytical chemistry. But no paper deals with the tran,fer processes of dyes at the liquid-liquid (L/L) interface so far.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0703500)the National Natural Science Foundation of China(Nos.52188101,52102153,52072029,51991340,51991342,51972022)+1 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(B14003)the Fundamental Research Funds for Central Universities(FRF-TP-18-001C1).
文摘The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
文摘The effects of different contact interfaces on the friction characteristics of OTS self-assembled monolayers were investigated by a universal micro-tribometer in different sliding velocities. The results indicate that there exist lower friction coefficients between OTS SAMs and Ti, Ni and Cu films deposited on GCr15 steel balls than those between OTS SAMs and GCr15 steel ball. The friction coefficient between OTS SAMs and Ti film is the largest, and the friction coefficient between OTS SAMs and Cu film is the least in these three films, which depends on the intrinsic characteristics of the materials. The friction coefficients between OTS SAMs and GCr15 steel ball and three nanometer films increase with the sliding velocity increasing, which can be explained by the relaxation characteristics of OTS molecules.
文摘Experiments have been done on mass transfer to a liquid-liquid interface on which inert gas bubbles are sparged.To simulate the pyrometallurgy system of melten slag-metal(or matte),aqueous solution-mercury(or zinc amalgam) system was used.The mass transfer coefficients of indicator ions as a function of bubble parameters have been determined.The experimental results show satisfactory agreement with the mass transfer model proposed Previously.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
文摘In this paper,amino capped CdSe/ZnS quantum dots(QDs)were immobilized on the 11-mercaptoundecanoic acid(MUA)self-assembled Au surface(SAM/Au)by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC).Atomic force microscopy(AFM),fluorescence imaging and electrochemistry were employed to characterize the surface.The results showed that CdSe/ZnS QDs were immobilized on the surface of SAM/Au successfully.Based on this method,the fluorescence of the QDs on the SAM/Au was monitored on-line.
基金The authors greatly appreciate the financial support from NSFC(22022402,21974051 for L.Zhang,and 21635003,21811540027 for Y.Tian)Innovation Program of Shanghai Municipal Education Commission(No.201701070005E00020)for Y.Tian.
文摘As a highly powerful and sensitive tool,surface enhanced Raman scattering(SERs)has attracted extensive attention in quantification analysis.However,the strong dependence of SERS signal on the detailed local nanostructure makes quantitative SERS analysis suffer from difficulties in controlling the uniformity of nanoscale hot spots and the inefficiency of placing the targeted molecules in prefabricated hot spots.
基金supported by the National Science Fund for Distinguished Young Scholars of China(grant no.22025207)National Natural Science Foundation of China(grant nos.22172172 and 22232006)+3 种基金Youth Innovation Promotion Association of CAS(grant no.2022049)China Scholarship Council(CSC,grant no.202104910187)IPE Project for Frontier Basic Research(grant no.QYJC-2022-011)Natural Science Foundation of Hebei Province(grant nos.B2020103036 and B2020103025).
文摘Biomolecular self-assembly based on peptides and proteins is a general phenomenon encountered in natural and synthetic systems.Liquid–liquid phase separation(LLPS)is intimately involved in biomolecular self-assembly,yet the key factors at a molecular scale activating or modulating such a process remain largely elusive.Herein,we discovered in our experiments that multistep desolvation is fundamental to the formation and evolution of peptide-rich droplets:The first step was partial desolvation of peptides to form peptide clusters,and the second step was selective desolvation of hydrophobic groups within clusters to trigger LLPS and the formation of peptiderich droplets,followed by complete desolvation of droplets,initiating the nucleation of peptide selfassembly.Manipulation of the degree of desolvation at different stages was an effective strategy to control the self-assembly pathways and polymorphisms.This study sheds light on the molecular origin of LLPS-mediated self-assembly distinct from classical one-step self-assembly and paves the way for the precise control of supramolecular self-assembly.
基金This work was supported by National Natural Science Foundation of China(51903011)Thomas P.Russell was supported by the US Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under Contract No.DE-AC02-05-CH11231 within the Adaptive Interfacial Assemblies Towards Structuring Liquids program(KCTR16).
文摘Host–guest molecular recognition at the liquid–liquid interface endows the interface with unique properties,including stimuli-responsiveness and self-regulation,due to the dynamic and reversible nature of non-covalent interactions.Increasing research efforts have been put into the preparation of supramolecular interfacial systems such as films and microcapsules by integrating functional components(e.g.,colloidal particles,polymers)at the interface,providing tremendous opportunities in the areas of encapsulation,delivery vehicles,and biphasic reaction systems.In this review,we summarize recent progress in supramolecular interfacial systems assembled by host–guest chemistry,and provide an overview of the fabrication process,functions,and promising applications of the resultant constructs.
文摘Transmission beam can be modulated at the liquid-liquid interface inside an electrowetting liquid lens.The fluctuation characteristics of the interface has a decisive effect on the beam modulation.A closed cylinder in capillary constant scale is analyzed and the natural frequencies of a flat interface are obtained using capillary wave hydrodynamics.Results in modes 0 and 1 are in good agreement with previous experiments in the literature.The influences of the radius,the height ratio and the height-to-diameter ratio of a liquid lens on the interface eigenfrequencies are analyzed.
基金supported by the National Natural Science Foundation of China(No.21808009)the Beijing Natural Science Foundation(No.2182051).
文摘We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)with near-infrared(NIR)luminescence.The formation of Ag2S QDs occurs at the interface of microdroplets,and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution.Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation.The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging,and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor.This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up.
基金This work was supported by National Key Research and Development Program of China(No.2020YFA0714700)National Natural Science Foundation of China(Nos.22075312 and 21773292)Key-Area Research and Development Program of Guangdong Province(No.2019B010934001).
文摘Aligned arrays of semiconducting carbon nanotubes(s-CNTs)with high homogenous density and orientation are urgently needed for high-performance carbon-based electronics.Herein,a length-controlled approach using combined technologies was developed to regulate the s-CNT length and reduce the length distribution.The impact of different lengths and length distributions was studied during aligned self-assembly on a liquid–liquid confined interface was investigated.The results show that short s-CNTs with a narrow distribution have the best alignment uniformity over the large scale.The optimized and aligned s-CNT array can reach a density as high as 100 CNTs·μm−1 on a 4-inch wafer.The field-effect transistor(FET)performance of these optimized s-CNT arrays was 64%higher than arrays without length-control.This study clarified that rational control of s-CNTs with desired length and length distribution on the aligned self-assembly process within the liquid–liquid confined interface.The results illustrate a solid foundation for the application of emerging carbon-based electronics.
基金supported by the National Natural Science Foundation of China(61831021,51773062)。
文摘Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.
基金This investigation was financially funded by the National Key Research and Development Program of China(Nos.2017YFA0104302,2018YFA0704103)the National N atural Science Foundation of China(Nos.61821002,51832001).Funding also partially comes from the Natural Science Foundation of Jiangsu Province(No.BK20191266)and Zhong Ying Young Scholar of Southeast University.The authors also would like to thank the support from the Fundamental Research Funds for the Central Universities.
文摘Micro/nanobubbles play an essential role in ultrasound-based biomedical applications.Here,a green and simple method to fabricate micro/nanobubbles was developed by the temperature-regulated self-assembly of lipids in the presence of free bubbles.The self-assembly mechanism of lipids interacting with gas-water interfaces was investigated,and the ultrasound imaging of the obtained lipid-encapsulated bubbles(LBs)was further confirmed.Above the phase transition temperature(Tm),fluid lipids transform from vesicles to micelles,and further assemble to the free bubbles interface to be a compressed monolayer,resulting in lipid shelled microbubbles.Cooling below 7m induces the lipid shell to glassy state and stables the LBs.Moreover,increasing the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000](DSPE-PEG2K)content in lipids formulation can further manipulate the shell curvature and reduce the LBs size into nanobubbles.LBs with diameters of 1.68±0.11 pm,704±7 nm and 208±6 nm were successfully prepared.The in vitro and in vivo ultrasound imaging results showed that all of the LBs had excellent echogenicity.The nanosized LBs revealed elongated imaging duration time and greater microvascular details for the liver tissue.Avoiding the organic solvent and complicated multiple preparation process,this method has great potential in construction of various multifunctional micro/nanobubbles with size control for theranostic applications.
基金financially supported by the National Natural Science Foundation of China(Nos.51772296,5217020858,51902016 and 21975015)the Fundamental Research Funds for the Central Universities(Nos.buctrc201829 and buctrc201904)。
文摘Self-assembly of nanoparticles at solid-liquid interface could be promising to realize the assembled functions for various applications,such as rechargeable batteries,supercapacitors,and electrocatalysis.This review summarizes the self-assembly of the nanoparticles at solid-liquid interface according to the different driving forces of assembly,including hydrophilic-hydrophobic interactions,solvophobic and electrostatic interaction.To be specific,the self-assembly can be divided into the following two types:surfactant-assisted self-assembly and direct self-assembly of Janus particles(inorganic and amphiphilic copolymer-inorganic Janus nanoparticles).Using the emulsion stabilized by nanoparticles as the template,the self-assembly constructed by the interaction of the nanostructure unit(including metal,metal oxide,and semiconductor,etc.)not only possesses the characteristic of nanostructure unit,but also exhibits the excellent assembly performance in electrochemistry aspect.The application of these assemblies in the area of electrochemical capacitors is presented.Finally,the current research progress and perspectives toward the self-assembly of nanoparticles at stabilized solid-liquid interface are proposed.
基金supported by the National Key Research and Development Program of China(No.2020YFA0210800)the National Natural Science Foundation of China(No.21522501)+1 种基金the Science and Technology Innovation Program of Hunan Province(No.2020RC4017)the Science and Technology Development Fund,Macao(No.196/2017/A3).
文摘As Interface mediated self-assembly of nanocrystals provide excellent strategy for sensing,catalysis or photonics,the construction of innovative interfaces and development of versatile strategies for nanocrystal synthesis are urgently needed.Herein,latent fingerprints(LFPs),the most common markers for human identity,are used as naturally accessible interface for organization of graphene isolated nanocrystals(GINs).Excitingly,the selective adsorption of GINs on lipidic ridge provides a universal approach for the in-situ construction of the plasmonic arrays.Such system with intrinsic chrominance and Raman signal enables the high resolution colorimetric and surfaced-enhanced Raman spectroscopy(SERS)dual-mode imaging,which can detail the structures of the LFPs from 1st to 3rd level even the LFPs are shielded.Furthermore,the interface can be constructed on diverse materials by a simple finger-pressing process and the densely packed arrays can serve as superior SERS substrate for label-free,non-invasive acquisition of molecule information especially residues in LFPs.The combination of chemical composition with detailed structures efficiently recognizes the human identity and could help link it to a crime scene.Overall,the LFPs can act as natural platform for interface mediated localized assembly and personalized information acquisition for forensic science or precise medicine.
基金Y.Z acknowledges the financial support of Zhejiang Provincial Natural Science Foundation of China(LR20E030003)X.C acknowledges the financial support of National Natural Science FoundationofChina(52003070).
文摘Block copolymers(BCPs)can automatically assemble into various regulated nanoparticles when they are confined within the emulsion droplet be-cause of the structural frustration of polymer chains and the soft template effect of the oil/water interface.In the past few years,great efforts have been made to regulate the morphologies of the resulting BCP particles.In this review article,various strategies for tuning oil/water interfacial prop-erties to engineer the as-formed BCP particles were summarized.Then,the comprehensive scenarios of the applications of the resulting BCP parti-cles were discussed.Finally,the future tendency and challenge of the self-assembly of BCPs confined in emulsion droplet were suggested.
基金A.K.Y.J.thanks the sponsorship of the Lee Shau-Kee Chair Professor(Materials Science),and the support from the APRC Grant of the City University of Hong Kong(No.9380086)the GRF grant(No.11307621)from the Research Grants Council of Hong Kong,Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302007)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(No.2019B121205002).
文摘Despite the rapidly increased power conversion efficiency(PCE)of perovskite solar cells(PVSCs),it is still quite challenging to bring such promising photovoltaic technology to commercialization.One of the challenges is the upscaling from small-sized lab devices to large-scale modules or panels for production.Currently,most of the efficient inverted PVSCs are fabricated on top of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA),which is a commonly used hole-transporting material,using spin-coating method to be incompatible with large-scale film deposition.Therefore,it is important to develop proper coating methods such as blade-coating or slot-die coating that can be compatible for producing large-area,high-quality perovskite thin films.It is found that due to the poor wettability of PTAA,the blade-coated perovskite films on PTAA surface are often inhomogeneous with large number of voids at the buried interface of the perovskite layer.To solve this problem,self-assembled monolayer(SAM)-based hole-extraction layer(HEL)with tunable headgroups on top of the SAM can be modified to provide better wettability and facilitate better interactions with the perovskite coated on top to passivate the interfacial defects.The more hydrophilic SAM surface can also facilitate the nucleation and growth of perovskite films fabricated by blade-coating methods,forming a compact and uniform buried interface.In addition,the SAM molecules can also be modified so their highest occupied molecular orbital(HOMO)levels can have a better energy alignment with the valence band maxima(VBM)of perovskite.Benefitted by the high-quality buried interface of perovskite on SAM-based substrate,the champion device shows a PCE of 18.47%and 14.64%for the devices with active areas of 0.105 cm^(2) and 1.008 cm^(2),respectively.In addition,the SAM-based device exhibits decent stability,which can maintain 90%of its initial efficiency after continuous operation for over 500 h at 40℃ in inert atmosphere.Moreover,the SAM-based perovskite mini-module exhibits a PCE of 14.13%with an aperture area of 18.0 cm^(2).This work demonstrates the great potential of using SAMs as efficient HELs for upscaling PVSCs and producing high-quality buried interface for large-area perovskite films.
基金supported by Natural Science Foundation of Henan Province(grant Nos.242300420187,222300420146).
文摘Au hierarchical architectures with special morphology and structures are strongly desired in varied applications.Herein,a simple synthesis method was developed for the one-step preparation of Au micronails(MNs)at the planar liquid-liquid interface under mild conditions.The well-defined Au MNs were grown and constructed at CHCl_(3)-H_(2)O interface at room temperature using aniline in CHCl_(3)as reducing agent and HAuCl_(4)in H_(2)O as precursor and no surfactant or seed is required.The intriguing Au MNs with rough surface consist of big heads and thin rods,just like iron nails in outline.Furthermore,through simple changing the reagent concentrations,the length and surface roughness of Au MNs can be adjusted conveniently.The effects of a series of factors on the morphology and structure of the products are studied in detail.With p-aminothiophenol as a molecular probe,the as-obtained Au MNs all exhibit dramatically improved surface enhanced Raman scattering sensitivity and high reproducibility,the enhancement factor and limit of detection of Au MNs are 5.4×10^(5)and 1.0×10^(-10),respectively.
基金supported by BMBF,DFG,NSC Poland,and DAAD through a variety of projects.
文摘Self-assembled monolayers(SAMs)represent an important tool in context of nanofabrication and molecular engineering of surfaces and interfaces.The properties of functional SAMs depend not only on the character of the tail groups at the SAM-ambient interface,but are also largely defined by their structure.In its turn,the latter parameter results from a complex interplay of the structural forces and a variety of other factors,including so called odd-even effects,viz.dependence of the SAM structure and properties on the parity of the number(odd or even)of individual building blocks in the backbone of the SAM constituents.The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111)and Ag(111),in which,in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the monolayers,one observes a pronounced dependence of molecular inclination and,consequently,the packing density of the SAM-forming molecules on the parity of number of methylene units in the alkyl linker.Here we review the properties of the above systems as well as address fundamental reasons behind the odd-even effects,including the existence of a so-called bending potential,which is frequently disregarded in analysis of the structure-building forces.The generality of the odd-even effects in SAMs is additionally supported by the recent data for SAMs on GaAs,scanning tunneling microscopy data for SAMs on Ag(111),and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111)and Ag(111).The implications of these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface,structural perfection,polymorphism,temperature-driven phase transitions,and SAM stability toward such factors as ionizing radiation,exchange reaction,and electrochemical desorption are discussed.These implications place the odd-even effects as an important tool for the design of functional SAMs in context of specific applications.
基金Project supported by the National Natural Science Foundation of China.
文摘I. INTRODUCTIONStudies on the electrochemical phenomena at the liquid-liquid interface are a developing area in electrochemistry and electroanalytical chemistry. The exploration for new ion transfer systems is very important in the development of this area. Dyes are a large group of reagents used widely in analytical chemistry. But no paper deals with the tran,fer processes of dyes at the liquid-liquid (L/L) interface so far.