In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4...In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline sepa...In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.展开更多
A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid ...A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.展开更多
A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water...A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.展开更多
Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene be...Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.展开更多
Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been ...Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been a difficult task. In this study, a sensitive method combining dispersive liquid-liquid microextraction (DLLME) with HPLC-UV was developed for the extraction and determination of OA and UA in traditional Chinese medicinal herbs (CMHs). Variables influencing DLLME such as type and volume of extraction solvent, volume of dispersive solvent, ionic strength, aqueous phase pH, extraction time, centrifugation speed and time, and sample volume were investigated and optimized. Under the optimum conditions, both OA and UA attained favorable extraction efficiencies with enrichment factors 1378 and 933, respectively. The linear dynamic ranges of 0.07 - 30.4 μg?mL–1 for OA and 0.08 - 33.6 μg?mL–1 for UA were obtained with square correlation coefficients of 0.9963. The detection limits of OA and UA were both 0.02 μg?mL–1. The method recoveries ranged between 88.2% - 116.2% for OA and 85.7% - 108.2% for UA with the RSDs (n = 5) lower than 8.6%. The proposed method was successfully applied to concentrate and simultaneously determine these two triterpenic acids in Hedyotis diffusa and Eriobotrya japonica samples.展开更多
Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey sa...Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.展开更多
A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methyl...A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methylene thiocarbohydrazide (DPTH) was used as a chelating agent, and chloroform and ethanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cobalt and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent, and extraction time, were studied and optimized. Under the optimum conditions, a preconcentration factor of 8 was reached. The detection limit for cobalt was 12.4 ng?mL–1, and the relative standard deviation (RSD) was 3.42% (n = 7, c = 100 ng?mL–1). The method was successfully applied to the determination of cobalt in food, environmental and water samples.展开更多
This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-ductio...This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-duction system capable of quantifying trace amounts of lead. In the proposed approach, ammonium pyr-rolidine dithiocarbamate (APDC) was used as a chelating agent and 1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl)imid as an extraction solvent was dissolved in acetone as the disperser solvent. The binary solution was then rapidly injected by a syringe into the water sample containing Pb2+ complex. Some factors influencing the extraction efficiency of Pb2+ and its subsequent determination, including extraction and dispersive solvent type, pH of sample solution, concentration of the chelating agent and salt effect were inspected by a full factorial design to identify important parameters and their interactions. Next, a central composite design was applied to obtain the optimum points of the important parameters. Under the optimum conditions, the limit of detection (LOD) was 0.2 μg/L. The relative standard deviation (R.S.D) was 1.4% for 5 μg/L of Pb2+ (n = 7). The relative recovery of lead in seawater, blood, tomato and black tea samples was measured.展开更多
In the present work, a ultrasound-assisted emulsification dispersive liquid-liquid microextraction based on solidification of floating organic droplet method has been developed as a sample preparation method prior to ...In the present work, a ultrasound-assisted emulsification dispersive liquid-liquid microextraction based on solidification of floating organic droplet method has been developed as a sample preparation method prior to flame atomic absorption spectrometry determination of trace amounts of gold in the standard, wastewater and river water samples. In the proposed method, 1-dodecanol and 5-(4-dimethylamino-benzylidene) were used as extraction solvent and chelating agent, respectively. Several factors that may be affected on the ex-traction process, such as type and volume of the extraction solvent, ionic strength, pH of the aqueous solu-tion, extraction temperature and extraction time were studied and optimized. Under the best experimental conditions, the calibration curve exhibited linearity over the range of 8.0 ng●mL-1- 3.0 μg●mL-1 with a correlation coefficient of 0.9978 and detection limit based on three times the standard deviation of the blank signal was 1.5 ng●mL-1. Eight replicate determinations of 0.2 and 1.0 μg●mL-1 of gold gave a mean absorbance of 0.051 and 0.253 with relative standard deviations of ±2.3% and ±1.5%, respectively. Finally, the developed method was successfully applied to the extraction and determination of gold ions in a silica ore, wastewater, river water and standard samples and satisfactory results were obtained.展开更多
Analysis of pesticide residue levels in juice beverages is important to ensure safe consumption and avoid global trade concerns associated to pesticide contaminations.A simple,inexpensive and effective method was deve...Analysis of pesticide residue levels in juice beverages is important to ensure safe consumption and avoid global trade concerns associated to pesticide contaminations.A simple,inexpensive and effective method was developed for the determination of organochlorine pesticides(OCPs)in bottled juice drinks using GC-MS.Sample pretreatment was performed using dispersive solid-phase microextraction(D-μ-SPE)for matrix desorption and dispersive liquid-liquid microextraction(DLLME)for analyte enrichment.In this study,an affordable and effective sorbent for the adsorption of OCPs from juice samples was synthesized from avocado seeds mixed with magnetic precursors for D-μSPE.The ground avocado seeds combined with a magnetic precursor nanocomposite were characterized using various instruments including scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and Brunauer-Emmett-Teller(BET)analysis.The solution obtained from D-μ-SPE desorption was used as a dispersant for the subsequent DLLME,which made the combination of D-μ-SPE with DLLME much easier.The effectiveness of the method was enhanced by optimizing the influential parameters in both D-μ-SPE and DLLME.Then after,the optimal values were determined for the real sample analysis.Accordingly,there was good linear dynamic range with a coefficient of determination(r2)≥0.9989.The limit of detection and quantification were 0.02–0.69 and 0.06–2.10 ng/L respectively.The method showed high enrichment factors ranging from 96 to 313 with recoveries of 87–100%.Intraday and interday precisions were≤4%.Compared with other reported methods,this method is a one-step,simple,cheap,fast,and environmentally friendly alternative and straightforward method for adsorbing organochlorine pesticides from sample solutions.These results demonstrates the high potential of the proposed method for the extraction and cleanup of contaminants in selected juices and other related samples.展开更多
A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floatin...A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.展开更多
A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shri...A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste. The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis. The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5, volume ratio), flow rate was 0.7 mL/min and UV wavelength was 476 nm. Under optimal conditions, good linearity was obtained in a range of 0.2--200.0 lug/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 Hg/mL, and the extraction recoveries at three spiked levels ranged from 88.3%--92.5% with a relative standard deviation(RSD) less than 4.3%. Moreover, the mean contents of astaxanthin in the three batches of shrimp waste were 95.9, 85.4 and 77.2 μg/g, respectively. This method combining the advantages of MISPE and DLLME results in high selectivity and low cost, which was applied to determining the astaxanthin level in shrimp waste samples.展开更多
A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines i...A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines in flour steamed bread and maize steamed bread. Several possible influential factors such as the type of ionic liquid and disperser solvent, extraction time, sample pH, ionic strength and the volume of ionic liquid and disperser solvent were optimized using single factor experiments and orthogonal array design (OAD) with OA25(54) matrix. Analysis of variance (ANOVA) and percent contribution (PC) were used to investigate the significance of the factors of OAD. Sample pH and ionic strength are statistically demonstrated two chief factors. Under the optimum condition, the method exhibits a good linearity (r2 〉 0.99) over the studied range (50-1000 ng g-l) for anilines. The extraction factors and recoveries for the anilines in two kinds of steamed breads ranged between 34.1%-73.3% and 44.3%-95.3%, respectively. The limit of detections (LODs) and limit of quantitations (LOQs) ranged be- tween 10-15 ng g-1 and 30--45 ng g-1.展开更多
The authors performed ionic liquid-based microwave-assisted liquid-liquid microextraction(IL-based MALLME) coupled with high performance liquid chromatographic separation for the determination of 6 sulfonamides (SA...The authors performed ionic liquid-based microwave-assisted liquid-liquid microextraction(IL-based MALLME) coupled with high performance liquid chromatographic separation for the determination of 6 sulfonamides (SAs) from animal oils. The target analytes were extracted from animal oil samples with sodium hydroxide solution containing 1-butyl-3-methylimidazolium tetrafluoroborateand as the extraction solvent under microwave irradiation. The experimental parameters of the IL-based MALLME, including types of ILs, volume of IL, amount of ion-pairing agent(NHaPF6), pH value of sample solution, and extraction temperature and time were evaluated. The limits of detection and quantification obtained were in a range of 0.4--0.5μg/kg and a range of 1.2--1.8μg/kg, respectively. The accuracy of the method was evaluated by analyzing five spiked animal oil samples at two fortified levels(5 and 50μg/kg), and the recoveries of SAs varied from 81.4% to 114.5% with relative standard deviations ranging from 0.8% to 9.0%.展开更多
A rapid, inexpensive and laboratory friendly method was developed for analysis of off-flavor/odor compounds in fresh and salt water using gas chromatography with chemical ionization-tandem mass spectrometry. Off-flavo...A rapid, inexpensive and laboratory friendly method was developed for analysis of off-flavor/odor compounds in fresh and salt water using gas chromatography with chemical ionization-tandem mass spectrometry. Off-flavor/odor compounds, included geosmin, 2- methylisobomeol (MIB), 2-isobutyl-3-methyoxypyrazine (IBMP), and 2-isopropyl-3-methoxypyrazine (IPMP). Using this method, a single sample can be extracted within minutes using only 1 mL of organic solvent. The ion transitions for IPMP, IBMP, MIB, and geosmin were 153 〉 121, 167 〉 125, 152 〉 95, and 165 〉 109, respectively. The linearity of this method for analyzing MIB ranged from 4 to 200ng·L^-1, and from 0.8 to 200ng·L^-1 for the other analytes. Method recoveries ranged from 97% to 111% and percent relative standard deviations ranged from 3% to 9%, indicating that the method is accurate, precise, and reliable.展开更多
A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on g...A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on gas chromatography coupled with a flame ionization detection(GC-FID). The mixed solution containing 30 μL of chloroform(extraction solvent) and 300 μL of tetrahydrofuran(dispersive solvent) was rapidly injected into the sample solution for the purpose of microextraction. After that, the solution mentioned above was centrifuged at 4000 r/min for 10 min, and then the organic sediment phase was detected by GC-FID. The effects of experimental parameters, such as the extraction solvent and the volume of it, and the dispersive solvent and the volume of it, on the yield of the extraction were studied in detail. Under the optimum conditions, the enrichment factors of the target analytes range from 87 to 214. Linearity ranges are 0.05-10.0μg/mL for methylparaben and 0.025--5.0 μg/mL for the other five parabens. The relative standard deviations(RSDs) are lower than 8.2%(n=6). The proposed method was applied to the analysis of six parabens in eleven aqueous cosmetics. The recoveries of the target analytes in the spiked real samples are in the range of 81.0%-103%.展开更多
In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL)...In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.展开更多
Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the ...Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.展开更多
基金the National Natural Science Foundation of China(Nos.20375035,20527005,20775070)by Zhejiang Provincial Natural Science Foundation of China(Nos.Z404105,Y507252).
文摘In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金supported by the Sapienza University of Rome through the project RICERCA 2019(protocol number:RG11916B6451D44A)。
文摘In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.
基金supported by Science Research Funds of Medical Course, HUST
文摘A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.
基金Supported by the National Natural Science Foundation of China(No.21105088)the Program for Science and Technology Projects of the Education Department of Fujian Province,China(No.JA10211)
文摘A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.
基金Supported by the Islamic Azad University(Shahreza Branch)the Iran Nanotechnology Initiative Council
文摘Dispersive liquid-liquid microextraction technique was introducd to remove the centrifuging step and conduct inclusion microextraction of charged porphyrins by nano-baskets. For nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in ortho-cone conformation was synthesized and used. The related parameters including ligand concentration, the volume of water disperser, salt effect, and extraction time were optimized. The linear range, detection limit(S/N=3) and precision(RSD, n=6) were determined to be 0.2―50, 0.07 μg/L and 5.3%, respectively. The results reveal that the new approach is competitive analytical tool and an alternative of the traditional methods in the crude oil and related systems.
文摘Isomeric triterpenic acids of oleanolic acid (OA) and ursolic acid (UA) both have very low ultraviolet absorption and always exist in the same plant, so the separation and simultaneous determination of them have been a difficult task. In this study, a sensitive method combining dispersive liquid-liquid microextraction (DLLME) with HPLC-UV was developed for the extraction and determination of OA and UA in traditional Chinese medicinal herbs (CMHs). Variables influencing DLLME such as type and volume of extraction solvent, volume of dispersive solvent, ionic strength, aqueous phase pH, extraction time, centrifugation speed and time, and sample volume were investigated and optimized. Under the optimum conditions, both OA and UA attained favorable extraction efficiencies with enrichment factors 1378 and 933, respectively. The linear dynamic ranges of 0.07 - 30.4 μg?mL–1 for OA and 0.08 - 33.6 μg?mL–1 for UA were obtained with square correlation coefficients of 0.9963. The detection limits of OA and UA were both 0.02 μg?mL–1. The method recoveries ranged between 88.2% - 116.2% for OA and 85.7% - 108.2% for UA with the RSDs (n = 5) lower than 8.6%. The proposed method was successfully applied to concentrate and simultaneously determine these two triterpenic acids in Hedyotis diffusa and Eriobotrya japonica samples.
文摘Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.
文摘A new method for the determination of cobalt was developed by dispersive liquid-liquid microextraction preconcentra-tion and flame atomic absorption spectrometry. In the proposed approach, 1,5-bis(di-2-pyridyl) methylene thiocarbohydrazide (DPTH) was used as a chelating agent, and chloroform and ethanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cobalt and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent, and extraction time, were studied and optimized. Under the optimum conditions, a preconcentration factor of 8 was reached. The detection limit for cobalt was 12.4 ng?mL–1, and the relative standard deviation (RSD) was 3.42% (n = 7, c = 100 ng?mL–1). The method was successfully applied to the determination of cobalt in food, environmental and water samples.
文摘This paper describes a dispersive liquid–liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled with flame atomic absorption spectrometry detection with microsample intro-duction system capable of quantifying trace amounts of lead. In the proposed approach, ammonium pyr-rolidine dithiocarbamate (APDC) was used as a chelating agent and 1-hexyl-3-methylimmidazolium bis (trifluormethylsulfonyl)imid as an extraction solvent was dissolved in acetone as the disperser solvent. The binary solution was then rapidly injected by a syringe into the water sample containing Pb2+ complex. Some factors influencing the extraction efficiency of Pb2+ and its subsequent determination, including extraction and dispersive solvent type, pH of sample solution, concentration of the chelating agent and salt effect were inspected by a full factorial design to identify important parameters and their interactions. Next, a central composite design was applied to obtain the optimum points of the important parameters. Under the optimum conditions, the limit of detection (LOD) was 0.2 μg/L. The relative standard deviation (R.S.D) was 1.4% for 5 μg/L of Pb2+ (n = 7). The relative recovery of lead in seawater, blood, tomato and black tea samples was measured.
文摘In the present work, a ultrasound-assisted emulsification dispersive liquid-liquid microextraction based on solidification of floating organic droplet method has been developed as a sample preparation method prior to flame atomic absorption spectrometry determination of trace amounts of gold in the standard, wastewater and river water samples. In the proposed method, 1-dodecanol and 5-(4-dimethylamino-benzylidene) were used as extraction solvent and chelating agent, respectively. Several factors that may be affected on the ex-traction process, such as type and volume of the extraction solvent, ionic strength, pH of the aqueous solu-tion, extraction temperature and extraction time were studied and optimized. Under the best experimental conditions, the calibration curve exhibited linearity over the range of 8.0 ng●mL-1- 3.0 μg●mL-1 with a correlation coefficient of 0.9978 and detection limit based on three times the standard deviation of the blank signal was 1.5 ng●mL-1. Eight replicate determinations of 0.2 and 1.0 μg●mL-1 of gold gave a mean absorbance of 0.051 and 0.253 with relative standard deviations of ±2.3% and ±1.5%, respectively. Finally, the developed method was successfully applied to the extraction and determination of gold ions in a silica ore, wastewater, river water and standard samples and satisfactory results were obtained.
基金This work was financially supported by the College of Natural Sciences,Jimma University through the grand research project(CNS-Chem-11-2020/21-SP1).
文摘Analysis of pesticide residue levels in juice beverages is important to ensure safe consumption and avoid global trade concerns associated to pesticide contaminations.A simple,inexpensive and effective method was developed for the determination of organochlorine pesticides(OCPs)in bottled juice drinks using GC-MS.Sample pretreatment was performed using dispersive solid-phase microextraction(D-μ-SPE)for matrix desorption and dispersive liquid-liquid microextraction(DLLME)for analyte enrichment.In this study,an affordable and effective sorbent for the adsorption of OCPs from juice samples was synthesized from avocado seeds mixed with magnetic precursors for D-μSPE.The ground avocado seeds combined with a magnetic precursor nanocomposite were characterized using various instruments including scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and Brunauer-Emmett-Teller(BET)analysis.The solution obtained from D-μ-SPE desorption was used as a dispersant for the subsequent DLLME,which made the combination of D-μ-SPE with DLLME much easier.The effectiveness of the method was enhanced by optimizing the influential parameters in both D-μ-SPE and DLLME.Then after,the optimal values were determined for the real sample analysis.Accordingly,there was good linear dynamic range with a coefficient of determination(r2)≥0.9989.The limit of detection and quantification were 0.02–0.69 and 0.06–2.10 ng/L respectively.The method showed high enrichment factors ranging from 96 to 313 with recoveries of 87–100%.Intraday and interday precisions were≤4%.Compared with other reported methods,this method is a one-step,simple,cheap,fast,and environmentally friendly alternative and straightforward method for adsorbing organochlorine pesticides from sample solutions.These results demonstrates the high potential of the proposed method for the extraction and cleanup of contaminants in selected juices and other related samples.
基金supported by the Natural Science Foundation of Hebei(No.B2010000657)
文摘A novel,simple,rapid,efficient and environment-friendly method for the determination of trace copper in cereal samples was developed by using dispersive liquid-liquid microextraction based on solidification of floating organic drop(DLLME-SFO) followed by flame atomic absorption spectrometry.In the DLLME-SFO,copper was complexed with 8-hydroxy quinoline and extracted into a small volume of 1-dodecanol,which is of low density,low toxicity and proper melting point near room temperature. The experimental parameters affecting the extraction efficiency were investigated and optimized.Under the optimum conditions, the calibration graph exhibited linearity over the range of 0.5—500 ng/mL with the correlation coefficient(r) of 0.9996.The enrichment factor was 122 and the limit of detection was 0.1 ng/mL.The method was applied to the determination of copper in the complex matrix samples such as rice and millet with the recoveries for the spiked samples at 5.0 and 10.0 u,g/g falling in the range of 92.0-98.0%and the relative standard deviation of 3.9-5.7%.
文摘A new molecularly imprinted solid-phase extraction(MISPE) monolithic cartridge was synthesized, and MISPE-DLLME(DLLME=dispersive liquid-liquid microextraction) was developed for purification of astaxanthin in shrimp waste. The eluent(methanol) from MISPE was used as the dispersive solvent in subsequent DLLME for further purifying and enriching the analyte prior to high-performance liquid chromatography(HPLC) analysis. The mobile phase was methanol-acetonitrile-water-dichloromethane(85:5:5:5, volume ratio), flow rate was 0.7 mL/min and UV wavelength was 476 nm. Under optimal conditions, good linearity was obtained in a range of 0.2--200.0 lug/mL(r2=0.9998) with a limit of detection(LOD) of 0.08 Hg/mL, and the extraction recoveries at three spiked levels ranged from 88.3%--92.5% with a relative standard deviation(RSD) less than 4.3%. Moreover, the mean contents of astaxanthin in the three batches of shrimp waste were 95.9, 85.4 and 77.2 μg/g, respectively. This method combining the advantages of MISPE and DLLME results in high selectivity and low cost, which was applied to determining the astaxanthin level in shrimp waste samples.
基金supported by the National Natural Science Foundation of China (20905073 & 20975105)
文摘A simple and rapid method of ionic liquid based dispersive liquid-liquid microextraction (DLLME) combining with high performance liquid chromatography (HPLC) was developed for the analysis of four toxic anilines in flour steamed bread and maize steamed bread. Several possible influential factors such as the type of ionic liquid and disperser solvent, extraction time, sample pH, ionic strength and the volume of ionic liquid and disperser solvent were optimized using single factor experiments and orthogonal array design (OAD) with OA25(54) matrix. Analysis of variance (ANOVA) and percent contribution (PC) were used to investigate the significance of the factors of OAD. Sample pH and ionic strength are statistically demonstrated two chief factors. Under the optimum condition, the method exhibits a good linearity (r2 〉 0.99) over the studied range (50-1000 ng g-l) for anilines. The extraction factors and recoveries for the anilines in two kinds of steamed breads ranged between 34.1%-73.3% and 44.3%-95.3%, respectively. The limit of detections (LODs) and limit of quantitations (LOQs) ranged be- tween 10-15 ng g-1 and 30--45 ng g-1.
文摘The authors performed ionic liquid-based microwave-assisted liquid-liquid microextraction(IL-based MALLME) coupled with high performance liquid chromatographic separation for the determination of 6 sulfonamides (SAs) from animal oils. The target analytes were extracted from animal oil samples with sodium hydroxide solution containing 1-butyl-3-methylimidazolium tetrafluoroborateand as the extraction solvent under microwave irradiation. The experimental parameters of the IL-based MALLME, including types of ILs, volume of IL, amount of ion-pairing agent(NHaPF6), pH value of sample solution, and extraction temperature and time were evaluated. The limits of detection and quantification obtained were in a range of 0.4--0.5μg/kg and a range of 1.2--1.8μg/kg, respectively. The accuracy of the method was evaluated by analyzing five spiked animal oil samples at two fortified levels(5 and 50μg/kg), and the recoveries of SAs varied from 81.4% to 114.5% with relative standard deviations ranging from 0.8% to 9.0%.
文摘A rapid, inexpensive and laboratory friendly method was developed for analysis of off-flavor/odor compounds in fresh and salt water using gas chromatography with chemical ionization-tandem mass spectrometry. Off-flavor/odor compounds, included geosmin, 2- methylisobomeol (MIB), 2-isobutyl-3-methyoxypyrazine (IBMP), and 2-isopropyl-3-methoxypyrazine (IPMP). Using this method, a single sample can be extracted within minutes using only 1 mL of organic solvent. The ion transitions for IPMP, IBMP, MIB, and geosmin were 153 〉 121, 167 〉 125, 152 〉 95, and 165 〉 109, respectively. The linearity of this method for analyzing MIB ranged from 4 to 200ng·L^-1, and from 0.8 to 200ng·L^-1 for the other analytes. Method recoveries ranged from 97% to 111% and percent relative standard deviations ranged from 3% to 9%, indicating that the method is accurate, precise, and reliable.
文摘A simple and rapid sample preparation method of dispersive liquid-liquid microextraction(DLLME) was applied in the simultaneous determination of six parabens in the aqueous cosmetics. The analysis was performed on gas chromatography coupled with a flame ionization detection(GC-FID). The mixed solution containing 30 μL of chloroform(extraction solvent) and 300 μL of tetrahydrofuran(dispersive solvent) was rapidly injected into the sample solution for the purpose of microextraction. After that, the solution mentioned above was centrifuged at 4000 r/min for 10 min, and then the organic sediment phase was detected by GC-FID. The effects of experimental parameters, such as the extraction solvent and the volume of it, and the dispersive solvent and the volume of it, on the yield of the extraction were studied in detail. Under the optimum conditions, the enrichment factors of the target analytes range from 87 to 214. Linearity ranges are 0.05-10.0μg/mL for methylparaben and 0.025--5.0 μg/mL for the other five parabens. The relative standard deviations(RSDs) are lower than 8.2%(n=6). The proposed method was applied to the analysis of six parabens in eleven aqueous cosmetics. The recoveries of the target analytes in the spiked real samples are in the range of 81.0%-103%.
基金Institutes of Health Research(CIHR)-Natural Sciences and Engineering Research Council(NSERC)of the Canada Collaborative Health Research Projects program for their financial support(Grant No.:355935)the Natural Sciences and Engineering Research Council of Canada Industrial Research Chair(IRC)program。
文摘In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.
基金supported by the Natural Sciences and Engineering Research Council of Canada,NSERC(Grant No.:IRCPJ 184412-15).
文摘Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.