期刊文献+
共找到782篇文章
< 1 2 40 >
每页显示 20 50 100
Selective synthesis of nitrate from air using a plasma-driven gas-liquid relay reaction system
1
作者 Sibo Chen Kai Mei +2 位作者 Yaru Luo Liang-Xin Ding Haihui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期439-446,I0012,共9页
The direct oxidation of nitrogen is a potential pathway to achieving the zero-carbon-emission synthesis of nitric acid or nitrate, because it does not involve ammonia synthesis and additional ammonia oxidation process... The direct oxidation of nitrogen is a potential pathway to achieving the zero-carbon-emission synthesis of nitric acid or nitrate, because it does not involve ammonia synthesis and additional ammonia oxidation processes. However, the slow kinetics of nitrogen oxidation and the difficult selective control of oxidation products hinder the development of this process. In this study, a plasma-driven gas-liquid relay reaction system was developed to overcome these limitations. A typical feature of this reaction system is that it can efficiently generate NO_x under plasma exposure;moreover, the specific anions in the absorption solution can be oxidized to strong oxidants capable of relay oxidation of low-valence nitrogen oxides. This feature allows for the deep oxidation of nitrogen, thus enabling the oxidation products of nitrogen to exist in high-valence states in the absorption solution. For experimental verification, we achieved the 100% selective synthesis of nitrate under plasma exposure, with air as the supply gas and a sodium sulfate solution as the absorption solution. 展开更多
关键词 Nitrogen oxidation Nitrate synthesis Plasma Relay reaction High selectivity
下载PDF
Synergetic enhancement of selectivity for electroreduction of CO_(2)to C_(2)H_(4)by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides
2
作者 Gang Dong Chuang Xue +3 位作者 Meng Li Tiantian Zhang Dongsheng Geng Li-Min Liu 《Materials Reports(Energy)》 2023年第2期164-172,I0004,共10页
Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electr... Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electrosynthesis limits its implementation in industrially interesting processes.Herein,we report a composite structured catalyst composed of Ag and Cu_(2)O with different crystal faces to achieve highly efficient reduction of CO_(2)to C_(2)H_(4).The catalyst composed of Ag and octahedral Cu_(2)O enclosed with(111)facet exhibits the best CO_(2)electroreduction performance,with the Faradaic efficiency(FE)and partial current density reaching 66.8%and 17.8 mA cm2 for C_(2)H_(4)product at-1.2 VRHE in 0.5 M KHCO_(3),respectively.Physical characterization and electrochemical test analysis indicate that the high selectivity for C_(2)H_(4)product stems from the synergistic effect of crystal faces control engineering and tandem catalysis.Specifically,Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution;subsequently,C-C coupling is promoted on the intimate surface of Cu_(2)O with facetdependent selectivity.The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO_(2)reduction reaction to generate C2þproducts. 展开更多
关键词 Cu_(2)O/Ag tandem catalysts Facet-dependent selectivity CO_(2)reduction reaction C_(2)H_(4) ELECTROCATALYSIS Synergistic effect
下载PDF
Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries
3
作者 Jie Zhu Junxue Chen +7 位作者 Xida Li Kun Luo Zewei Xiong Zhiyu Zhou Wenyun Zhu Zhihong Luo Jingbin Huang Yibing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期383-393,共11页
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr... Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts. 展开更多
关键词 ELECTROCATALYST Oxygen evolution reaction Surface reconstruction selective etching Amorphous-crystalline heterostructures
下载PDF
Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
4
作者 Cijun Shuai Xiaoxin Shi +2 位作者 Feng Yang Haifeng Tian Pei Feng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期296-311,共16页
Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe case... Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe cases.In this study,oxygen vacancy(OV)defects Fe-doped Ti O2(OV-FeTiO2)nanoparticles were synthesized by nano TiO2and Fe3O4via high-energy ball milling,which was then incorporated into polycaprolactone/polyglycolic acid(PCLGA)biodegradable polymer matrix to construct composite bone scaffold with good antibacterial activities by selective laser sintering.The results indicated that OV defects were introduced into the core/shell-structured OV-FeTiO2nanoparticles through multiple welding and breaking during the high-energy ball milling,which facilitated the adsorption of hydrogen peroxide(H2O2)in the bacterial infection microenvironment at the bone transplant site.The accumulated H2O2could amplify the Fenton reaction efficiency to induce more hydroxyl radicals(·OH),thereby resulting in more bacterial deaths through·OH-mediated oxidative damage.This antibacterial strategy had more effective broad-spectrum antibacterial properties against Gram-negative Escherichia coli(E.coli)and Gram-positive Staphylococcus aureus(S.aureus).In addition,the PCLGA/OV-FeTiO2scaffold possessed mechanical properties that match those of human cancellous bone and good biocompatibility including cell attachment,proliferation and osteogenic differentiation. 展开更多
关键词 bacterial infection bone scaffold selective laser sintering Fenton reaction antibacterial properties
下载PDF
Prediction of(n,2n)reaction cross-sections of long-lived fission products based on tensor model
5
作者 Jia-Li Huang Hui Wang +7 位作者 Ying-Ge Huang Er-Xi Xiao Yu-Jie Feng Xin Lei Fu-Chang Gu Long Zhu Yong-Jing Chen Jun Su 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期208-221,共14页
Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reac... Interest has recently emerged in potential applications of(n,2n)reactions of unstable nuclei.Challenges have arisen because of the scarcity of experimental cross-sectional data.This study aims to predict the(n,2n)reaction cross-section of long-lived fission products based on a tensor model.This tensor model is an extension of the collaborative filtering algorithm used for nuclear data.It is based on tensor decomposition and completion to predict(n,2n)reaction cross-sections;the corresponding EXFOR data are applied as training data.The reliability of the proposed tensor model was validated by comparing the calculations with data from EXFOR and different databases.Predictions were made for long-lived fission products such as^(60)Co,^(79)Se,^(93)Zr,^(107)P,^(126)Sn,and^(137)Cs,which provide a predicted energy range to effectively transmute long-lived fission products into shorter-lived or less radioactive isotopes.This method could be a powerful tool for completing(n,2n)reaction cross-sectional data and shows the possibility of selective transmutation of nuclear waste. 展开更多
关键词 (n 2n)reaction cross-section Tensor model Machine learning Collaborative filtering algorithm selective transmutation
下载PDF
Engineering asymmetric electronic structure of cobalt coordination on CoN_(3)S active sites for high performance oxygen reduction reaction
6
作者 Long Chen Shuhu Yin +9 位作者 Hongbin Zeng Jia Liu Xiaofeng Xiao Xiaoyang Cheng Huan Huang Rui Huang Jian Yang Wen-Feng Lin Yan-Xia Jiang Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期494-502,共9页
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform... The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance. 展开更多
关键词 Fuel cells Oxygen reduction reaction Coordination symmetry CoN_(3)S H_(2)O_(2)selectivity
下载PDF
Selective arylation/annulation cascade reactions of 2-alkynylanilines with diaryliodonium salts
7
作者 段英 杨艳良 +1 位作者 戴晓玉 李东密 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1837-1840,共4页
An efficient Cu catalyzed selective arylation/annulation cascade reaction of 2-alkynylanilines with diaryliodonium salts was developed.This reaction was selective to N-arylation instead of C-arylation,which provides a... An efficient Cu catalyzed selective arylation/annulation cascade reaction of 2-alkynylanilines with diaryliodonium salts was developed.This reaction was selective to N-arylation instead of C-arylation,which provides a simple synthetic method for N-aryl indoles. 展开更多
关键词 selective arylation ANNULATION Diaryliodonium salt 2-Alkynylaniline N-Aryl indole Cascade reaction
下载PDF
Preparation of a highly efficient Pt/USY catalyst for hydrogenation and selective ring-opening reaction of tetralin 被引量:3
8
作者 Qi Wang Zhang-Gui Hou +6 位作者 Bo Zhang Jian Liu Wei-Yu Song De-Sheng Xue Li-Zhi Liu Dong Wang Xin-Guo Chen 《Petroleum Science》 SCIE CAS CSCD 2018年第3期605-612,共8页
Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance ... Ultrastable Y zeolite(USY)-supported Pt catalyst was prepared by gas-bubbling-assisted membrane reduction. The influence of reaction conditions and the metal and acid sites of catalysts on the catalytic performance of catalyst in hydrogenation and selective ring opening of tetralin, 1,2,3,4-tetrahydronaphthalene(THN), was studied. It was found that the optimal reaction conditions were at a temperature of 280 °C, hydrogen pressure of 4 MPa, liquid hourly space velocity of 2 h^-1 and H2/THN ratio of 750. Under these optimal conditions, a high conversion of almost 100% was achieved on the 0.3 Pt/USY catalyst. XRD patterns and TEM images revealed that Pt particles were highly dispersed on the USY, favorable to the hydrogenation reaction of tetralin. Ammonia temperature-programmed desorption and Py-IR results indicated that the introduction of Pt can reduce the acid sites of USY, particularly the strong acid sites of USY. Thus, the hydrocracking reaction can be suppressed. 展开更多
关键词 Hydrogenation and selective ring opening reaction conditions Supported Pt catalyst TETRALIN
下载PDF
Chemical Reaction Route Selection Based on Green Chemical Engineering 被引量:2
9
作者 何潮洪 葛挺峰 David W.Edwards 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期662-667,共6页
In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools... In the preliminary stage of chemical process design, the choice of chemical reaction route is the key design decision, and the concepts of atom utilization and environmental quotient have become extremely useful tools. However, the waste quality such as chemical toxicity and other engineering factors have not been taken into account. Therefore, a synthetic route selection index, Iroute, is proposed to determine the suitability of a chemical route in this paper. Iroute considers the effects of 'extended atom economy', material renewability, chemical characteristics and some engineering factors. The extended atom economy concept regards not only the value of the desired product but also the value of byproducts. The methodology by using Iroute to compare different routes is illustrated in case study of cyclohexanone oxime and acrylonitrile manufacture. 展开更多
关键词 green design reaction route selection atom economy product chain
下载PDF
Promoting di-isobutene selectivity over ZnO/ZrO_(2)-SO_(4) in isobutene oligomerization 被引量:1
10
作者 Jiyuan Li Mifen Cui +5 位作者 Zhuxiu Zhang Xian Chen Qing Liu Zhaoyang Fei Jihai Tang Xu Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期165-171,共7页
Isooctane attracts great interest in recent years because of its promising potential as friendlyenvironmental gasoline,which is obtained by dimerization of isobutene with a hydrogenation step.Herein,a solid acid catal... Isooctane attracts great interest in recent years because of its promising potential as friendlyenvironmental gasoline,which is obtained by dimerization of isobutene with a hydrogenation step.Herein,a solid acid catalyst sulfated zirconia modified by ZnO was prepared.The oligomerization of isobutene had been investigated over ZrO_(2)-SO_(4) and ZnO(X)/ZrO_(2)-SO_(4) catalyst in order to find efficient catalysts for the production of isobutene oligomers.The presence of ZnO obviously enhanced the dimerization of isobutene and ZnO(X)/ZrO_(2)-SO_(4) exhibited the highest di-isobutene yield of 60%.Kinetic studies showed the higher trimerization-to-dimerization activation energy ratios of ZnO(X)/ZrO_(2)-SO_(4) than those of ZrO_(2)-SO_(4) from 353 to 393 K.In addition,reaction rate of dimerization was higher than trimerization over ZnO(X)/ZrO_(2)-SO_(4).The high L/B ratio manifested the capability to enhance the selectivity of C8 in isobutene dimerization.Furthermore,ZnO(X)/ZrO_(2)-SO_(4) exhibited stable conversion for the dimerization of isobutene. 展开更多
关键词 Sulfated zirconia Zinc oxide ISOBUTENE selectivity Chemical reaction CATALYSIS
下载PDF
Defect engineering of single-walled carbon nanohorns for stable electrochemical synthesis of hydrogen peroxide with high selectivity in neutral electrolytes 被引量:1
11
作者 Yang Liu Jianshuo Zhang +2 位作者 Suqiong He Yaqi Cui Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期118-123,共6页
Hydrogen peroxide(H_(2)O_(2))is one of the most important chemicals,which are commonly used in the paper and pulp industry,water purification and environmental protection[1-3].Most of the commercial available H_(2)O_(... Hydrogen peroxide(H_(2)O_(2))is one of the most important chemicals,which are commonly used in the paper and pulp industry,water purification and environmental protection[1-3].Most of the commercial available H_(2)O_(2) is produced by the anthraquinone oxidation process,which is environment unfriendly. 展开更多
关键词 Hydrogen peroxide Electrochemical synthesis selectivity Oxygen reduction reaction Defects
下载PDF
Reactions’Descriptors Selection and Yield Estimation Using Metaheuristic Algorithms and Voting Ensemble
12
作者 Olutomilayo Olayemi Petinrin Faisal Saeed +2 位作者 Xiangtao Li Fahad Ghabban Ka-Chun Wong 《Computers, Materials & Continua》 SCIE EI 2022年第3期4745-4762,共18页
Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessa... Bioactive compounds in plants,which can be synthesized using N-arylationmethods such as the Buchwald-Hartwig reaction,are essential in drug discovery for their pharmacological effects.Important descriptors are necessary for the estimation of yields in these reactions.This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation.The algorithms were evaluated based on computational time and the number of selected descriptors.Analyses show that robust performance is obtained with more descriptors,compared to cases where fewer descriptors are selected.The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets,and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R^(2) of 0.9423.The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation.The ensemble model has also shown robust performance in its yield estimation ability and efficiency. 展开更多
关键词 Buchwald-Hartwig reaction descriptor selection machine learning metaheuristic algorithm palladium-catalyzed cross-coupling reaction voting ensemble
下载PDF
Gait-Ground Reaction Force Sensors Selection Based on ROC Curve Evaluation
13
作者 Rami Alkhatib Mohamad Diab +2 位作者 Bassam Moslem Christophe Corbier Mohamed El Badaoui 《Journal of Computer and Communications》 2015年第3期13-19,共7页
Classification of normal gait from pathological gait as then can be used as indicator of falling among subjects requires the correct choice of sensor location in the insole. Such a flexi force- sensor can be used unde... Classification of normal gait from pathological gait as then can be used as indicator of falling among subjects requires the correct choice of sensor location in the insole. Such a flexi force- sensor can be used underneath foot to measure vertical ground reaction force. To start with, the most relevant information (parameters) that can characterize the recorded signals are extracted from the vertical ground reaction force signals. Then Receiver Operating Characteristic curve is used to evaluate the features upon 8 sensors underneath each foot located at different locations. To confirm results obtained, features are passed upon a chosen classifier, in this paper K-nearest neighbors algorithm is chosen. Results show that the sensor located at the inner arch of the sole of the foot (i.e. at the mid foot) holds the most relevant information needed for better classification compared to other sensors. 展开更多
关键词 GAIT ANALYSIS ROC ANALYSIS Sensor selectION GAIT Ground reaction FORCE (GRF)
下载PDF
Effectiveness of Selected Reaction Monitoring for rapid assay of Cypermethrin Residue in Perilla Leaves
14
作者 Noriyasu Niimura 《Advances in Materials Physics and Chemistry》 2011年第1期1-5,共5页
Many kinds of pesticides have been developed and used to yield a good harvest but the residues in agricul-tural products cause health problems. It is important to keep watch on these residues by using adequate methods... Many kinds of pesticides have been developed and used to yield a good harvest but the residues in agricul-tural products cause health problems. It is important to keep watch on these residues by using adequate methods of analysis. Pretreatment such as gel permeation chromatography (GPC) or column chromatography is often needed for the quantitative analysis of pesticide in agricultural products by conventional methods such as gas chromatography/low resolving power mass spectrometry (GC/LRMS). However, these pretreat-ments need a lot of work and take time. New methods saving the necessity of these pretreatments have been desired. We have applied selected reaction monitoring (SRM) to quantitatively determine cypermethrin residues in Perilla frutescens samples and compared the results with LRMS and HRMS in SIM mode. A background peak caused by the matrix overlapped the cypermethrin peak in the analysis using LRMS. SRM and HRMS in SIM mode provided chromatograms without matrix interference. The high selectivity of the product ion (m/z 127) produced from precursor ion (m/z 163) isolated the target peaks from the matrix peaks when using SRM. This method eliminates the pretreatment step, thus saving time and simplify ing the ana-lytical process. 展开更多
关键词 PESTICIDE RESIDUE CYPERMETHRIN PERILLA Frutescens selected reaction Monitoring high Re-solving Power mass SPECTROMETRY
下载PDF
Photothermal Catalytic Selective Oxidation of Isobutane to Methacrylic Acid over Keggin-Type Heteropolyacid
15
作者 Yichuan Wang Xiao Sun +2 位作者 Zeyue Wei Xuanyu Zhang Weixin Huang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期497-502,I0001,共7页
Thermal and photothermal catalytic selec-tive oxidation of isobutane to methacrylic acid(MAA)are comparatively studied over a keggin-type Cs2.9Cu0.34V0.49PMo12O40 het-eropolyacid acid.An introduction of light was obse... Thermal and photothermal catalytic selec-tive oxidation of isobutane to methacrylic acid(MAA)are comparatively studied over a keggin-type Cs2.9Cu0.34V0.49PMo12O40 het-eropolyacid acid.An introduction of light was observed to enhance both the i-C4H10 conversion and the MAA selectivity,and consequently the MAA formate rate,particularly at low temperatures.Characterization re-sults show that oxidation of methacrolein(MAL)to MAA is the rate-limiting step while UV light illumination promotes the oxidation ofσ-bonded MAL with OH groups toσ-bonded MAA on the catalyst surface.These results demonstrate a synergistic effect of thermal cataly-sis and photocatalysis in selective oxidation of isobutane to MAA,which suggests photother-mal catalysis as a promising strategy to catalyze the selective oxidation of higher hydrocar-bons at relative mild reaction conditions. 展开更多
关键词 Photothermal catalytic reaction Thermal catalytic reaction selection oxida-tion reaction mechanism In situ characterization
下载PDF
Building up a general selection strategy and catalytic performance prediction expressions of heteronuclear double-atom catalysts for N_(2)reduction
16
作者 Yibo Wu Cheng He Wenxue Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期375-386,I0009,共13页
The severe environmental problems and the demand for energy urgently require electrocatalysis to replace Haber-Bosch for the nitrogen reduction reaction(NRR).The descriptors and important properties of single-atom and... The severe environmental problems and the demand for energy urgently require electrocatalysis to replace Haber-Bosch for the nitrogen reduction reaction(NRR).The descriptors and important properties of single-atom and homonuclear double-atom catalysts have been preliminarily explored,but the relationship between the inherent properties and catalytic activity of heteronuclear double-atom catalysts with better performance remains unclear.Therefore,it is very significant to explore the prediction expressions of catalytic activity of heteronuclear double-atom catalysts based on their inherent properties and find the rule for selecting catalytic centers.Herein,by summarizing the free energy for the key steps of NRR on 55 catalysts calculated through the first-principle,the expressions of predicting the free energy and the corresponding descriptors are deduced by the machine learning,and the strategy for selecting the appropriate catalytic center is proposed.The selection strategy for the central atom of heteronuclear double-atom catalysts is that the atomic number of central B atom should be between group VB and VIIIB,and the electron difference between central A atom and B atom should be large enough,and the selectivity of NRR or hydrogen evolution reaction(HER)could be calculated through the prediction formula.Moreover,five catalysts are screened to have low limiting potential and excellent selectivity,and are further analyzed by electron transfer.This work explores the relationship between the inherent properties of heteronuclear double-atom catalysts and the catalytic activity,and puts forward the rules for selecting the heteronuclear double-atom catalytic center,which has guiding significance for the experiment. 展开更多
关键词 Heteronuclear double-atom catalyst Nitrogen reduction reaction Density functional theory Prediction expression selection strategy
下载PDF
Efficient hydrogen peroxide production enabled by exploring layered metal telluride as two electron oxygen reduction reaction electrocatalyst
17
作者 Yingming Wang Hongyuan Yang +6 位作者 Zhiwei Liu Kui Yin Zhaowu Wang Hui Huang Yang Liu Zhenhui Kang Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期247-255,I0007,共10页
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi... It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media. 展开更多
关键词 Transition metal telluride Oxygen reduction reaction Charge polarization Activity and selectivity Hydrogen peroxide
下载PDF
电化学合成耦合可再生能源制氢:机遇与挑战
18
作者 魏子栋 黄寻 +5 位作者 段昊泓 邵明飞 李仁贵 张金利 李灿 段雪 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第3期1-6,共6页
利用可再生能源实现物质和能量的转化,是发展节能减排技术、实现双碳目标的重要手段.有机电合成是一种温和、清洁、高效的物质合成方法,可以有效解决传统化工过程的高能耗和高污染问题.将电解水制氢与有机电合成耦合,利用水分解产生的... 利用可再生能源实现物质和能量的转化,是发展节能减排技术、实现双碳目标的重要手段.有机电合成是一种温和、清洁、高效的物质合成方法,可以有效解决传统化工过程的高能耗和高污染问题.将电解水制氢与有机电合成耦合,利用水分解产生的活性氧/氢直接氧化/还原有机物,不仅有助于降低能耗,还可以生产高附加值有机化工产品,是提高电能利用效率、降低生产成本的有效方案.然而,尽管这种方法具有诸多优势,其工业化应用仍面临一系列难题.本文回顾了电化学合成的发展历史,探讨了氢能时代为电化学合成带来的发展机遇.同时,分析了将电化学合成与电解水耦合所面临的挑战以及未来发展方向.首先,应当慎重选择与电解水制氢耦合的阳极反应体系,其氧化产物不但要具有比反应物更高的经济价值,而且要有较大的市场需求量,以匹配制氢规模.其次,虽然在热力学上有机物氧化比析氧更容易发生,但在动力学及传质方面,有机物氧化可能存在劣势,因此必须开发适用于工业制氢电流密度(500‒2000 mA cm^(‒2))的有机物氧化电极材料.第三,阳极有机产物选择性不仅影响反应物的利用率,而且决定后续分离纯化成本,需要通过调控活性氢/氧及有机物表面的竞争吸附等手段,提高阳极目标产物选择性及法拉第效率.第四,隔膜是分离两极反应物料、防止副反应发生的重要部件.然而,现有的阴、氧离子交换膜的耐有机物腐蚀性能差,需要开发适用于电解耦合体系的、具有高离子传导能力且性能稳定的新型隔膜材料.最后,当有机物氧化与电解水耦合后,产物的分离复杂程度增加,需要将精馏、萃取、膜分离等手段与电化学反应相结合,以提升电解过程效率.综上,本文讨论了电化学合成耦合可再生能源制氢的若干技术难题,为未来电合成与氢能技术共同发展提供新思路. 展开更多
关键词 电化学合成 电解水制氢 反应匹配 产物选择性 隔膜稳定性 过程强化
下载PDF
Promotional roles of ZrO_2 and WO_3 in V_2O_5-WO_3/TiO_2-ZrO_2 catalysts for NO_x reduction by NH_3:Catalytic performance,morphology,and reaction mechanism 被引量:8
19
作者 张亚平 王龙飞 +4 位作者 李娟 张会岩 徐海涛 肖睿 杨林军 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第11期1918-1930,共13页
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated... V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2. 展开更多
关键词 ZIRCONIA Tungsten oxide selective catalytic reduction by ammonia In situ infrared diffuse-reflectance Fourier-transform spectroscopy reaction mechanism
下载PDF
A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis 被引量:1
20
作者 Junting Dong Chang Yu +5 位作者 Hui Wang Lin Chen Hongling Huang Yingnan Han Qianbing Wei Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期486-495,I0011,共11页
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c... Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique. 展开更多
关键词 Nickel-iron hydroxide electrocatalysts Highly selective seawater electrolysis Weak nucleophilicity Oxygen evolution reaction Hydrogen
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部