The improvement effect of bioaugmentation with phenol degrading bacteria( PDB) on pollutants removal and chemicals consumption was investigated in a full-scale Lurgi coal gasification wastewater( LCGW)treatment plant....The improvement effect of bioaugmentation with phenol degrading bacteria( PDB) on pollutants removal and chemicals consumption was investigated in a full-scale Lurgi coal gasification wastewater( LCGW)treatment plant. Bioaugmentation with PDB applied in biological contact oxidation tank( BCOT) was carried out in summer to prevent the limitation of low temperature on the bacteria activity. After augmentation,the removal of COD and total phenol(TPh) was significantly enhanced,with efficiencies from 78.5% and 80% to 82.3% and 86.6% in BCOT,respectively. The improvement could also be detected in further processes,including anoxic-oxic,coagulation sedimentation and biological aerated filter,with COD and TPh removal efficiencies increment from 70.1%,24. 7% and 53. 4% to 73. 9%,29. 1% and 55. 9%,from 67. 1%,20% and 25% to 72.5%,25% and 32%, respectively. In addition, chemicals used for denitrification and coagulation sedimentation showed considerable reduction after bioaugmentation,with methanol,coagulant,coagulant aid and bleaching dosage from 100. 0,100. 0,80. 0 and 60. 0 mg/L to 85. 0,70. 6,57. 8 and 45.7 mg/L,respectively. Therefore,bioaugmentation with PDB can be a viable alternative for LCGW treatment plant in pollutants removal and chemicals saving.展开更多
This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa...This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.展开更多
The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanopartic...The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanoparticle zerovalent iron was synthesized using natural silty clay as a support material(SC-NZVI).The NZVI and SC-NZVI were characterized by infrared spectroscopy(FTIR),scanning electron microscope(SEM),X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET),and zeta potential(ζ).The interpretation of the results demonstrated that the polyphenol and other antioxidants in green tea waste can be used as reduction and capping agents in NZVI synthesis,with silty clay an adequate support.Additionally,the experiments were carried out to explore phenol adsorption by NZVI and SC-NZVI.To determine the optimum conditions,the impact of diverse experimental factors(i.e.,initial pH,adsorbent dose,temperature,and concentration of phenol)was studied.Langmuir,Freundlich,and Tempkin isotherms were used as representatives of adsorption equilibrium.The obtained results indicated that the adsorption processes for both NZVI and SC-NZVI well fitted by the Freundlich isotherm model.The appropriateness of pseudofirstorder and pseudosecondorder kinetics was investigated.The experimental kinetics data were good explained by the second-order model.The thermodynamic parameters(ΔH0,ΔS0,andΔG0)for NZVI and SC-NZVI were determined.The maximum removal rates of phenol at optimum conditions,when adsorbed onto NZVI and SC-NZVI,were found to be 94.8%and 90.1%,respectively.展开更多
The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets ...The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.展开更多
苯酚废水生物毒害作用强,处理过程消耗能量大,利用微生物燃料电池技术处理苯酚废水可在水质净化的同时以电能的形式回收能量。本文以模拟苯酚废水为燃料构建并启动双室微生物燃料电池,考察电池产电特性及对苯酚废水的降解特性。结果表明...苯酚废水生物毒害作用强,处理过程消耗能量大,利用微生物燃料电池技术处理苯酚废水可在水质净化的同时以电能的形式回收能量。本文以模拟苯酚废水为燃料构建并启动双室微生物燃料电池,考察电池产电特性及对苯酚废水的降解特性。结果表明:微生物燃料电池可以利用苯酚废水为底物产电,电池稳定运行电压输出为220±10 m V,稳定输出功率密度为161.30 m W/cm~3±0.33 m W/cm~3;电池对苯酚处理效果较好,COD去除率为79.4%±2.0%,相应的苯酚污染物去除率为97.0%±2.0%;稳定运行的电池阳极微生物多样性较好。展开更多
基金Sponsored by China Postdoctoral Science Foundation(Grant No.2016M600254)
文摘The improvement effect of bioaugmentation with phenol degrading bacteria( PDB) on pollutants removal and chemicals consumption was investigated in a full-scale Lurgi coal gasification wastewater( LCGW)treatment plant. Bioaugmentation with PDB applied in biological contact oxidation tank( BCOT) was carried out in summer to prevent the limitation of low temperature on the bacteria activity. After augmentation,the removal of COD and total phenol(TPh) was significantly enhanced,with efficiencies from 78.5% and 80% to 82.3% and 86.6% in BCOT,respectively. The improvement could also be detected in further processes,including anoxic-oxic,coagulation sedimentation and biological aerated filter,with COD and TPh removal efficiencies increment from 70.1%,24. 7% and 53. 4% to 73. 9%,29. 1% and 55. 9%,from 67. 1%,20% and 25% to 72.5%,25% and 32%, respectively. In addition, chemicals used for denitrification and coagulation sedimentation showed considerable reduction after bioaugmentation,with methanol,coagulant,coagulant aid and bleaching dosage from 100. 0,100. 0,80. 0 and 60. 0 mg/L to 85. 0,70. 6,57. 8 and 45.7 mg/L,respectively. Therefore,bioaugmentation with PDB can be a viable alternative for LCGW treatment plant in pollutants removal and chemicals saving.
文摘This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.
文摘The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanoparticle zerovalent iron was synthesized using natural silty clay as a support material(SC-NZVI).The NZVI and SC-NZVI were characterized by infrared spectroscopy(FTIR),scanning electron microscope(SEM),X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET),and zeta potential(ζ).The interpretation of the results demonstrated that the polyphenol and other antioxidants in green tea waste can be used as reduction and capping agents in NZVI synthesis,with silty clay an adequate support.Additionally,the experiments were carried out to explore phenol adsorption by NZVI and SC-NZVI.To determine the optimum conditions,the impact of diverse experimental factors(i.e.,initial pH,adsorbent dose,temperature,and concentration of phenol)was studied.Langmuir,Freundlich,and Tempkin isotherms were used as representatives of adsorption equilibrium.The obtained results indicated that the adsorption processes for both NZVI and SC-NZVI well fitted by the Freundlich isotherm model.The appropriateness of pseudofirstorder and pseudosecondorder kinetics was investigated.The experimental kinetics data were good explained by the second-order model.The thermodynamic parameters(ΔH0,ΔS0,andΔG0)for NZVI and SC-NZVI were determined.The maximum removal rates of phenol at optimum conditions,when adsorbed onto NZVI and SC-NZVI,were found to be 94.8%and 90.1%,respectively.
基金Supported by the National Natural Science Foundation of China (50921063,51104191)the Natural Science Foundationof Chongqing (2009BA6047)
文摘The paper presents results of phenol oxidized under the conditions of high temperature created during collapse of cavitation bubbles.The degradation efficiency has been greatly improved by using cavitation water jets combined with H2O2 as demonstrated in laboratory tests.Various factors affecting phenol removal ratio were ex-amined and the degradation mechanism was revealed by high performance liquid chromatography(HPLC).The re-sults showed that 99.85% of phenol was mineralized when phenol concentration was 100 mg·L-1 with pH value of 3.0,H2O2 concentration of 300 mg·L-1,confining pressure of 0.5 MPa,and pumping pressure of 20 MPa.The in-termediate products after phenol oxidation were composed of catechol,hydroquinone and p-benzoquinone.Finally,phenol was degraded into maleic acid and acetic acid.Furthermore,a dynamic model of phenol oxidation via cavi-tation water jets combined with H2O2 has been developed.
文摘苯酚废水生物毒害作用强,处理过程消耗能量大,利用微生物燃料电池技术处理苯酚废水可在水质净化的同时以电能的形式回收能量。本文以模拟苯酚废水为燃料构建并启动双室微生物燃料电池,考察电池产电特性及对苯酚废水的降解特性。结果表明:微生物燃料电池可以利用苯酚废水为底物产电,电池稳定运行电压输出为220±10 m V,稳定输出功率密度为161.30 m W/cm~3±0.33 m W/cm~3;电池对苯酚处理效果较好,COD去除率为79.4%±2.0%,相应的苯酚污染物去除率为97.0%±2.0%;稳定运行的电池阳极微生物多样性较好。