Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully ex...Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.展开更多
Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, ...Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pt nanoparticles were highly dispersed in the CMK-3 with 43.7% dispersion. The Pt/CMK-3 catalyst was an effective catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives under the experimental conditions studied here. The Pt/CMK-3 catalyst was more active than commercial Pt/C catalyst in most cases. A highest turnover frequency of 43.8 s-1 was measured when the Pt/CMK-3 catalyst was applied for the hydrogenation of 2-methyl-nitrobenzene in ethanol under optimal conditions. It is worthy of note that the Pt/CMK-3 catalyst could be recycled easily, and could be reused at least fourteen times without any loss in activity or selectivity for the hydrogenation of nitrobenzene in ethanol.展开更多
Mg2B2O5 whiskers with high aspect ratio were synthesized by coprecipitation and sintering process using MgCl2-6H2O, H3BO3, and NaOH as raw materials and KCl as a flux. Their formation process was investigated by therm...Mg2B2O5 whiskers with high aspect ratio were synthesized by coprecipitation and sintering process using MgCl2-6H2O, H3BO3, and NaOH as raw materials and KCl as a flux. Their formation process was investigated by thermogravimetry and differential scanning calo- rimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microcopy (SEM). It is found that the products synthesized at 832℃ are monoclinic Mg2B205 whiskers with a diameter of 200-400 nm and a length of 50-80 μm. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses show that the whiskers obtained at 832℃ are single crystalline and grow along with the [010] direction. The growth mechanism of Mg2B2O5 whiskers was also presented.展开更多
A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements...A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.展开更多
Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH...Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.展开更多
FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of t...FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of the FeCo-Al2O3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods,respectively.The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD,XPS,TEM and N2 adsorption techniques.It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active,and the yield and purity of the synthesized CNTs were promoted evidently.The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method.On the other hand,N2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area,which was beneficial to dispersion of active components.TEM images further confirmed its higher dispersion.These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.展开更多
Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, no...Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, non-anticipated intermediate crystalline phases, such as γ-Fe2O3, α-Fe2O3, BaCO3, and BaFe2O4 etc., were formed with the delay of the formation of BaFe12O19. The formation of single phase BaFe12O19 required calcination at 850 oC for 4 h. On the other hand, using coprecipitation technique, amorphous hydroxide precursor was directly transferred into BaFe12O19 almost without the formation of intermediate crystalline phases. BaFe12O19 was prepared by calcining at 700 oC for 3 h. The results were confirmed by ESEM and VSM analyses. Based on the already reported results and the observed results in this study, it can be concluded that the coprecipitaion technique is easier to control than the sol-gel method for preparation of BaFe12O19 at a low temperature.展开更多
The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry....The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).展开更多
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ...The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.展开更多
The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechani...The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing(MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering usingthe different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPCcomposite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density ata low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) ofthe CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively.展开更多
The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X ray diffractio...The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X ray diffraction and transmission electron microscopy. X ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.展开更多
Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spec...Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.展开更多
According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydr...According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydrodesulfurization process was developed and verified. The model was utilized to predict the sulfur content of products under different operating conditions. The effects of temperature, space velocity, pressure, and hydrogen concentration on the dcsulfurization rate were investigated.展开更多
White body-color (Y, Gd)BxV1-xO4-x :Eu^3+ phosphors were prepared by coprecipitation reaction. Under VUV excitation at 147 nm, the red emission colorimetric purity of (Y, Gd) BxV1-xO4-x: Eu^3+ phosphor is much...White body-color (Y, Gd)BxV1-xO4-x :Eu^3+ phosphors were prepared by coprecipitation reaction. Under VUV excitation at 147 nm, the red emission colorimetric purity of (Y, Gd) BxV1-xO4-x: Eu^3+ phosphor is much better than that of commercial PDP (plasma display panels) phosphor (Y, Gd)BO3:Eu^3+ . But its relative emission intensity is only about 90% of the commercial phosphor.展开更多
This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyh...This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyhydroxysulphate.Cu(II)concentration reduced to0.058mmol/L in A.ferrooxidans inoculated system,and Cd also reduced to the lowest concentration(0.085mmol/L).Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution.The precipitates are characterized by XRD,SEM,and FTIR analysis.The main component of the iron-oxyhydroxysulphate was well crystallized jarosite.A.ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage.Higher ferrous iron oxidation rate and Fe(III)supply rate in A.ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter.Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal,and efficiently removed from acidic wastewater through A.ferrooxidans mediated coprecipitation.展开更多
Olivine LiFePO4/C nanowires have been successfully synthesized by a simple and eco-friendly solution preparation.The phase,structure,morphology and composition of the as-prepared products were characterized by powder ...Olivine LiFePO4/C nanowires have been successfully synthesized by a simple and eco-friendly solution preparation.The phase,structure,morphology and composition of the as-prepared products were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric and differential-thermogravimetric analysis(TG-DTA) and energy dispersive X-ray spectrometry(EDS) techniques,showing uniform nanowire shape of LiFePO4/C with a diameter of 80-150 nm and a length of several microns.The heat-treated LiFePO4/C nanowires show excellent electrochemical properties of specific discharge capacity,rate capacity and cycling stability.In particular,the LiFePO4/C nanowires heat-treated at 400 °C show preferable first discharge specific capacity of 161 mA·h/g at 0.1C rate,while the voltage platform is 3.4 V and the first discharge specific capacity is 93 mA·h/g at 20C rate.The specific capacity retention is 98% after 50 cycles at 5C rate.展开更多
The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and...The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD). It was shown that the interfacial structure of Si3N4/TiN/Ti5Si3+Ti5Si4 + Ni3Si/ (NiTi ) /Ni3Ti/ Ni was formed after bonding. The activation energies for TiN layer and the mixed reaction layer of Ti5Si3 + Ti5Si4 + Ni3Si are 546. 8 kJ/mol and 543. 9 kJ/mol, respectively. The formation and transition processes of interface layer sequence in the joint were clarified by diffusion path. An important characteristic, which is different from the conventional brazing and soid-state diffusion bonding, has been found, i. e., during the partial transient liquid-phase bonding, not only the reaction layers which have formed grow, but also the diffusion path in the subsequent reaction changes because of the remarkable variation of the concentration on the metal side.展开更多
The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sinteri...The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CUO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CUO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials.展开更多
An efficient poly(ethylene glycol) (PEG)-supported liquid-phase parallel approach to di(aryloxyacetyl)thiosemicarbazides is described. PEG-bound phenol reacted with chloroacetic acid to afford PEG-bound phenyloxyaceti...An efficient poly(ethylene glycol) (PEG)-supported liquid-phase parallel approach to di(aryloxyacetyl)thiosemicarbazides is described. PEG-bound phenol reacted with chloroacetic acid to afford PEG-bound phenyloxyacetic acid, which was readily converted into corresponding phenyloxyacetyl chloride. Subsequent nucleophilic substitution with ammonium thiocyanate followed by addition of aryloxyacetic acid hydrazides gave PEG-bound di(aryloxyacetyl)thiosemi-carbazides, which were easily cleaved to give the resulting library of 1-aryloxyacetyl-4-(4'-methoxylcarbonylphenyloxyacetyl)thiosemicarbazides in good to high yield and high purity.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
基金supported by the National Key Research and Development Plan (2018YFC1900203)The National Science Fund for Distinguished Young Scholars (52000094)The National Natural Science Foundation of China (51968033)。
文摘Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.
基金supported by the National Natural Science Foundation of China(21273076 and 21373089)the Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Catalysis Materials(Zhejiang Normal University,ZJHX2013)Shanghai Leading Academic Discipline Project (B409)~~
文摘Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pt nanoparticles were highly dispersed in the CMK-3 with 43.7% dispersion. The Pt/CMK-3 catalyst was an effective catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives under the experimental conditions studied here. The Pt/CMK-3 catalyst was more active than commercial Pt/C catalyst in most cases. A highest turnover frequency of 43.8 s-1 was measured when the Pt/CMK-3 catalyst was applied for the hydrogenation of 2-methyl-nitrobenzene in ethanol under optimal conditions. It is worthy of note that the Pt/CMK-3 catalyst could be recycled easily, and could be reused at least fourteen times without any loss in activity or selectivity for the hydrogenation of nitrobenzene in ethanol.
基金financially supported by the Department of Science and Technology of Qinghai Province of China(Grant No.2010-G-208)
文摘Mg2B2O5 whiskers with high aspect ratio were synthesized by coprecipitation and sintering process using MgCl2-6H2O, H3BO3, and NaOH as raw materials and KCl as a flux. Their formation process was investigated by thermogravimetry and differential scanning calo- rimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microcopy (SEM). It is found that the products synthesized at 832℃ are monoclinic Mg2B205 whiskers with a diameter of 200-400 nm and a length of 50-80 μm. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) analyses show that the whiskers obtained at 832℃ are single crystalline and grow along with the [010] direction. The growth mechanism of Mg2B2O5 whiskers was also presented.
文摘A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.
基金Supported by the National Natural Science Foundation of China (20576081, 20736009) and the Ph.D. Programs Foundation of Ministry of Education of China (20070610128).
文摘Liquid phase oxidation of toluene is an environmental benign route for the production of benzoic acid.In a φ48mm bubble column reactor,the commercial process of toluene liquid phase oxidation was conducted with Co(CH3COO)2.4H2O as catalyst.The Co2+ concentration [Co2+] was determined by extraction spectrophotometry and hereby the Co3+ concentration [Co3+] was obtained by mass balance.The results showed that [Co3+] reached the maximum at about 25-30min.[Co3+] increased with increasing Co catalyst amount at total Co concentration<150 mg.L-1 of toluene.The conversion of toluene,yield and selectivity of benzoic acid increased with the increasing [Co3+/Co2+] max.A high [Co3+] and a high [Co3+]/[Co2+] ratio are beneficial to the reaction.
文摘FeCo-Al2O3 catalyst was prepared by an ultrasonic coprecipitation (UC) method for the growth of carbon nanotubes (CNTs) from catalytic decomposition of methane.Its catalytic performance was compared with that of the FeCo-Al2O3 catalyst counterparts prepared by stepwise impregnation (I) and conventional coprecipitation (C) methods,respectively.The structure and properties of the catalysts and the CNTs as produced thereon were investigated by means of XRD,XPS,TEM and N2 adsorption techniques.It was found that the catalyst prepared by the ultrasonic coprecipitation method was more active,and the yield and purity of the synthesized CNTs were promoted evidently.The XPS results revealed that there were more active components on the surface of the catalyst prepared by the ultrasonic coprecipitation method.On the other hand,N2 adsorption demonstrated that the catalyst prepared by the ultrasonic coprecipitation method conferred larger specific surface area,which was beneficial to dispersion of active components.TEM images further confirmed its higher dispersion.These factors could be responsible for its higher activity for the growth of CNTs from catalytic decomposition of methane.
基金the Harbin Engineering University Foundation of Talent(No.HEUFT05082) the Postdoctoral Foundation of Heilongjiang Province, China(No.LRB07-231).
文摘Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods, respectively. The composition of the so-obtained materials was investigated by means of XRD. By the sol-gel method, non-anticipated intermediate crystalline phases, such as γ-Fe2O3, α-Fe2O3, BaCO3, and BaFe2O4 etc., were formed with the delay of the formation of BaFe12O19. The formation of single phase BaFe12O19 required calcination at 850 oC for 4 h. On the other hand, using coprecipitation technique, amorphous hydroxide precursor was directly transferred into BaFe12O19 almost without the formation of intermediate crystalline phases. BaFe12O19 was prepared by calcining at 700 oC for 3 h. The results were confirmed by ESEM and VSM analyses. Based on the already reported results and the observed results in this study, it can be concluded that the coprecipitaion technique is easier to control than the sol-gel method for preparation of BaFe12O19 at a low temperature.
文摘The kinetics of liquid-phase hydrogenation of toluene catalyzed by MlNi_5 was studied by investigating the influences of the reaction temperature and pressure on the mass transfer-reaction processes inside the slurry. The results show that the reaction rate accelerates when the reaction temperature increases, and reaches its maximum at about 490 K, but if temperature is higher than 510 K, the reaction rate decreases rapidly. The whole reaction process is controlled by the reaction at the surface of the catalyst particles. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particle can be neglected. The apparent reaction rate is zero order for toluene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model is obtained. The kinetic model fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi_5-toluene slurry system is 41.01 kJ·mol^(-1).
基金financially supported by ISSP RAS-Russian Government contracts
文摘The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed.
基金This work was supported by the National Natural Science Foundation of China(No.50372041)National“863”Plan(No.2003AA305620).
文摘The α-SiC in 0.5μm size powders were coated with Al_2O_3 and Y_2O_3 by a coprecipitation coating (CPC) method forfabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing(MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering usingthe different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPCcomposite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density ata low temperature, 100℃ lower than that of MM composite. The strength (573 MPa) and hardness (23.3 GPa) ofthe CPC composite are significantly higher than those (323 MPa and 13.5 GPa) of the MM composite, respectively.
基金Supported by the National 973project(No.G2 0 0 0 0 2 6 4 10 ) and Inovation Funds of Dalian Insitute of Chem icalPhysics
文摘The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X ray diffraction and transmission electron microscopy. X ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.
基金supported by the National Natural Science Foundation of China(No.20706039)the National Basic Research Program(973 Program) of China (No.2005CB221204)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi of China in 2010the Young Scientific and the Technical Fund of Shanxi of China (No.2006021010)
文摘Cu-Zn-Al slurry catalysts were prepared using a complete liquid-phase preparation technology under different heat treatment atmospheres.The catalysts were characterized using X-ray diffraction,X-ray photoelectron spectroscope,and N2 adsorption-desorption.Their application in the single-step synthesis of dimethyl ether from syngas was also investigated.The results indicate that the type of heat treatment atmosphere has an influence on the Cu species and the Cu0/Cu+ ratio on the catalyst surface.Moreover,the final Cu/Zn ratio on the catalyst surface is mainly dependent on the composition and reaction environment of the catalyst and less on the type of heat treatment atmosphere.The prepared catalysts can suppress sintering of active sites at high temperatures,and the type of heat treatment atmosphere mainly affects the capability of the catalyst for methanol synthesis.The catalysts perform best using N2 as the heat treatment atmosphere.
基金the financial support from the SINOPEC(No.2014310031600599)
文摘According to the characteristics of FCC diesel, a technology of liquid-phase hydrodesulfurization of the diesel in tubular reactors was proposed and lab-scale experiments were carried out. A kinetic model for the hydrodesulfurization process was developed and verified. The model was utilized to predict the sulfur content of products under different operating conditions. The effects of temperature, space velocity, pressure, and hydrogen concentration on the dcsulfurization rate were investigated.
文摘White body-color (Y, Gd)BxV1-xO4-x :Eu^3+ phosphors were prepared by coprecipitation reaction. Under VUV excitation at 147 nm, the red emission colorimetric purity of (Y, Gd) BxV1-xO4-x: Eu^3+ phosphor is much better than that of commercial PDP (plasma display panels) phosphor (Y, Gd)BO3:Eu^3+ . But its relative emission intensity is only about 90% of the commercial phosphor.
基金Project(51174239)supported by the National Natural Science Foundation of ChinaProject supported by the Shanghai Tongji Gao Tingyao Environment Protection Science&Technology Development Foundation,China+2 种基金Project supported by the Hunan Provincial Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,ChinaProject(2017M610506)supported by Postdoctoral Foundation for MG from Chinese PD Science Foundation,ChinaProject(185690)supported by PD Research Funding Plan in Hunan and Central South University,China
文摘This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyhydroxysulphate.Cu(II)concentration reduced to0.058mmol/L in A.ferrooxidans inoculated system,and Cd also reduced to the lowest concentration(0.085mmol/L).Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution.The precipitates are characterized by XRD,SEM,and FTIR analysis.The main component of the iron-oxyhydroxysulphate was well crystallized jarosite.A.ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage.Higher ferrous iron oxidation rate and Fe(III)supply rate in A.ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter.Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal,and efficiently removed from acidic wastewater through A.ferrooxidans mediated coprecipitation.
基金Project(51202066)supported by the National Natural Science Foundation of ChinaProject supported by Scientific Research Fund of Hunan Provincial Science and Technology Department,China+1 种基金Project(2013-26)supported by the State Key Program of Jilin University,ChinaProject(2013001)supported by Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem,Minister of Water Resources,China
文摘Olivine LiFePO4/C nanowires have been successfully synthesized by a simple and eco-friendly solution preparation.The phase,structure,morphology and composition of the as-prepared products were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetric and differential-thermogravimetric analysis(TG-DTA) and energy dispersive X-ray spectrometry(EDS) techniques,showing uniform nanowire shape of LiFePO4/C with a diameter of 80-150 nm and a length of several microns.The heat-treated LiFePO4/C nanowires show excellent electrochemical properties of specific discharge capacity,rate capacity and cycling stability.In particular,the LiFePO4/C nanowires heat-treated at 400 °C show preferable first discharge specific capacity of 161 mA·h/g at 0.1C rate,while the voltage platform is 3.4 V and the first discharge specific capacity is 93 mA·h/g at 20C rate.The specific capacity retention is 98% after 50 cycles at 5C rate.
文摘The interfacial reactions in partial transient liquid-phase bonding of Si3N4 ceramics with Ti/Ni/Ti interlayers were studied by means of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffractometry (XRD). It was shown that the interfacial structure of Si3N4/TiN/Ti5Si3+Ti5Si4 + Ni3Si/ (NiTi ) /Ni3Ti/ Ni was formed after bonding. The activation energies for TiN layer and the mixed reaction layer of Ti5Si3 + Ti5Si4 + Ni3Si are 546. 8 kJ/mol and 543. 9 kJ/mol, respectively. The formation and transition processes of interface layer sequence in the joint were clarified by diffusion path. An important characteristic, which is different from the conventional brazing and soid-state diffusion bonding, has been found, i. e., during the partial transient liquid-phase bonding, not only the reaction layers which have formed grow, but also the diffusion path in the subsequent reaction changes because of the remarkable variation of the concentration on the metal side.
基金Project(200805331062) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010FJ4061) supported by the Science and Technology Program of Hunan Province,China
文摘The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CUO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CUO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials.
文摘An efficient poly(ethylene glycol) (PEG)-supported liquid-phase parallel approach to di(aryloxyacetyl)thiosemicarbazides is described. PEG-bound phenol reacted with chloroacetic acid to afford PEG-bound phenyloxyacetic acid, which was readily converted into corresponding phenyloxyacetyl chloride. Subsequent nucleophilic substitution with ammonium thiocyanate followed by addition of aryloxyacetic acid hydrazides gave PEG-bound di(aryloxyacetyl)thiosemi-carbazides, which were easily cleaved to give the resulting library of 1-aryloxyacetyl-4-(4'-methoxylcarbonylphenyloxyacetyl)thiosemicarbazides in good to high yield and high purity.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.