期刊文献+
共找到23,410篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and mechanical properties of 8YSZ ceramics by liquid-phase sintering with CuO-TiO_2 addition 被引量:1
1
作者 周宏明 郭雁军 +2 位作者 李荐 易丹青 肖来荣 《Journal of Central South University》 SCIE EI CAS 2012年第5期1196-1201,共6页
The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sinteri... The 8% (mass fraction) yttrium-partially-stabilized zirconia (8YSZ) ceramic was fabricated via liquid phase sintering at 1 200-1 400℃ by adding different mass ratios of CuO-16.7%TiO2 (molar fraction) as sintering aid. Relative density, microstructure, Vickers hardness and bending strength as a function of sintering temperature and additive content were investigated. The experiment results show that liquid phase sintering at low temperature can be realized through adding CUO-16.7% TiO2 to 8YSZ. The Vickers hardness and bending strength of samples with sintering aid are generally much higher than those of samples without sintering aid for all sintering temperatures, and increase with the increase of sintering temperature. When the addition content of CUO-16.7% TiO2 is beyond 0.5%, the relative density, Vickers hardness and bending strength decrease with the increase of the mass ratio of sintering aid. Low additions of sintering aid are beneficial to aiding densification; high additions of sintering aid are detrimental to the sintered properties mainly due to greater amounts of pores generated by the volatilization of oxygen with the eutectic reaction between copper oxide and titanium dioxide. It is found that the fine grain size and high relative density are two main reasons of the high bending strength and Vickers hardness of the materials. 展开更多
关键词 liquid-phase sintering 8YSZ ceramic microstructure mechanical properties CuO-TiO2
下载PDF
Mineral-phase evolution and sintering behavior of MO–SiO_2–Al_2O_3–B_2O_3 (M = Ca,Ba) glass-ceramics by low-temperature liquid-phase sintering
2
作者 Song Chen Zhen Sun De-gui Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第9期1042-1054,共13页
In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspen... In this work, network former SiO_2 and network intermediate Al_2O_3 were introduced into typical low-melting binary compositions CaO·B_2O_3, CaO·2B_2O_3, and BaO·B_2O_3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950°C. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO–SiO_2–Al_2O_3–B_2O_3(M = Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al_(20)B_4O_(36), CaAl_2Si_2O_8, and BaAl_2Si_2O_8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties. 展开更多
关键词 GLASS-CERAMICS liquid-phase sintering ALUMINOSILICATE MINERAL phase MICROSTRUCTURES
下载PDF
Microstructure and properties of liquid-phase sintered tungsten heavy alloys by using ultra-fine tungsten powders
3
作者 于洋 王尔德 《中国有色金属学会会刊:英文版》 CSCD 2004年第5期912-917,共6页
The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size o... The microstructure and properties of liquid-phase sintered 93W-4.9Ni-2.1Fe tungsten heavy alloys using ultra-fine tungsten powders (medium particle size of 700 nm) and original tungsten powders (medium particle size of 3 μm) were investigated respectively. Commercial tungsten powders (original tungsten powders) were mechanically milled in a high-energy attritor mill for 35 h. Ultra-fine tungsten powders and commercial Ni, Fe powders were consolidated into green compacts by using CIP method and liquid-phase sintering at 1 465 ℃ for 30 min in the dissociated ammonia atmosphere. Liquid-phase sintered tungsten heavy alloys using ultra-fine tungsten powders exhibit full densification (above 99% in relative density) and higher strength and elongation compared with conventional liquid-phase sintered alloys using original tungsten powders due to lower sintering temperature at 1 465 ℃ and short sintering time. The mechanical properties of sintered tungsten heavy alloy are found to be mainly dependent on the particles size of raw tungsten powders and liquid-phase sintering temperature. 展开更多
关键词 微观结构 钨合金 液相烧结工艺 机械性能 BCC 温度
下载PDF
Combining cold sintering and Bi_(2)O_(3)-Activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures 被引量:4
4
作者 Haoyang Leng Jiuyuan Nie Jian Luo 《Journal of Materiomics》 SCIE EI 2019年第2期237-246,共10页
The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at ... The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at reduced temperatures.As an example,a cold-sintered specimen with the addition of 1.1wt%Bi_(2)O_(3)sintering additive achieved a high conductivity of 0.91 mS/cm(with~96%relative density)after annealing at 1000℃;this conductivity is>70%higher than that of a cold-sintered specimen without adding the Bi_(2)O_(3)sintering additive,and it is>700%of the conductivity of a dry-pressed counterpart with the same amount of Bi_(2)O_(3)added,all of which are subjected to the same heating profile.The highest conductivity achieved in this study via combining CSP and Bi_(2)O_(3)-activated LSP is>1.5 mS/cm.This study suggests an opportunity to combine the new CSP with the traditional LPS to sinter solid electrolytes to achieve high densities and conductivities at reduced temperatures.This combined CSP-LPS approach can be extended to a broad range of other materials to fabricate the“thermally fragile”solid electrolytes or solid-state battery systems,where reducing the processing temperature is often desirable. 展开更多
关键词 Cold sintering process liquid-phase sintering NASICON Solid electrolytes Solid-state sodium-ion battery
原文传递
Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery
5
作者 Xiang Han Weijun Zhou +7 位作者 Minfeng Chen Linshan Luo Lanhui Gu Qiaobao Zhang Jizhang Chen Bo Liu Songyan Chen Wenqing Zhang 《Nano Research》 SCIE EI CSCD 2022年第7期6156-6167,共12页
Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathode... Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport. 展开更多
关键词 solid-state battery single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1) liquid-phase sintering mixed ionic-electronic interphases freestanding architecture
原文传递
Solution-processed n-type Bi_2Te_(3-x)Se_x nanocomposites with enhanced thermoelectric performance via liquid-phase sintering 被引量:2
6
作者 Chaohua Zhang Chunxiao Zhang +1 位作者 Hongkuan Ng Qihua Xiong 《Science China Materials》 SCIE EI CSCD 2019年第3期389-398,共10页
The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Her... The much slower progress in enhancing the thermoelectric performance of n-type Bi2Te3 than that of p-type Bi2Te3 based materials in the past decade hinders the widespread use in power generation and refrigeration. Here, a facile bottom-up solution-synthesis with spark plasma sintering(SPS) process has been developed to build n-type Bi2Te3-xSex bulk nanocomposites, which substantially improves the power factor and decreases the lattice thermal conductivity by tuning the interface scattering of phonons and electrons. The stoichiometric composition in ternary Bi2Te3-xSex nanocomposites is also tuned to optimize the carrier concentration and lattice thermal conductivity. The optimized bulk nanocomposite Bi2Te2.7Se0.3 exhibits a ZT of 1.1 at^371 K, which is comparable to the corresponding commercially available ingots. Our results demonstrate the great potential of the solution-processed n-type Bi2Te3-xSex nanocomposites for cost-effective thermoelectric applications. 展开更多
关键词 thermoelectric liquid-phase sintering NANOCOMPOSITES solution-processed bismuth TELLURIDE
原文传递
High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(Ⅱ)/Cu(Ⅱ)composite
7
作者 Chenyang Zhao Yinhan Cheng +6 位作者 Guangfei Qu Yongheng Yuan Fenghui Wu Ye Liu Shan Liu Junyan Li Ping Ning 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期98-108,共11页
Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully ex... Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas. 展开更多
关键词 liquid-phase catalysis PHOSPHINE Catalytic oxidation Kinetic analysis Transition metals
下载PDF
Microstructural evolution and mechanical properties of h-BN composite ceramics with Y2O3-AlN addition by liquid-phase sintering 被引量:1
8
作者 Bao-Fu Qiu Xiao-Ming Duan +5 位作者 Zhuo Zhang Xing-Qi Liao Zhi-Hua Yang De-Long Cai De-Chang Jia Yu Zhou 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期555-561,共7页
Hexagonal boron nitride(h-BN)composite ceramics were prepared by hot pressing with the addition of Y2O3 and AlN.The effects of different Y2O3–AlN contents on microstructural evolution,mechanical properties and therma... Hexagonal boron nitride(h-BN)composite ceramics were prepared by hot pressing with the addition of Y2O3 and AlN.The effects of different Y2O3–AlN contents on microstructural evolution,mechanical properties and thermal diffusion coefficients of h-BN composite ceramics were investigated.The results indicate that Y2O3–AlN forms a liquid phase during the sintering process achieving a good wettability with h-BN grains.In pure h-BN ceramic and h-BN composite ceramic with 40 wt%Y2O3–AlN,the h-BN grains grow well when controlled through solid-phase and liquid-phase diffusion,respectively.With the increase in Y2O3–AlN content,mechanical properties and thermal diffusion coefficients of h-BN composite ceramics first decrease and then increase,and the properties of h-BN composite ceramic with 10 wt%Y2O3–AlN are the inflection points.Such properties are highly related to the phase compositions,porosity and microstructure. 展开更多
关键词 Hexagonal boron nitride Y2O3–AlN Liquidphase sintering WETTABILITY Mechanical properties
原文传递
Phase-Field Simulation of Sintering Process:A Review
9
作者 Ming Xue Min Yi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1165-1204,共40页
Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is e... Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is essential for effective product assessment.The phase-field method stands out for its unique ability to simulate these structural transformations.Despite its widespread application,there is a notable absence of literature reviews focused on its usage in sintering simulations.Therefore,this paper addresses this gap by reviewing the latest advancements in phase-field sintering models,covering approaches based on energy,grand potential,and entropy increase.The characteristics of various models are extensively discussed,with a specific emphasis on energy-based models incorporating considerations such as interface energy anisotropy,tensor-form diffusion mechanisms,and various forms of rigid particle motion during sintering.Furthermore,the paper offers a concise summary of phase-field sintering models that integrate with other physical fields,including stress/strain fields,viscous flow,temperature field,and external electric fields.In conclusion,the paper provides a succinct overview of the entire content and delineates potential avenues for future research. 展开更多
关键词 Phase-field model REVIEW sinterING additive manufacturing
下载PDF
Effect of sintering temperature and holding time on structure and properties of Li_(1.5)Ga_(0.5)Ti_(1.5)(PO_4)_(3)electrolyte with fast ionic conductivity
10
作者 Yin-yi LUO Hao-zhang LIANG +6 位作者 Ping ZHANG Lei HAN Qian ZHANG Li-dan LIU Zhi-wei LUO Tian-xiang NING An-xian LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2959-2971,共13页
Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects... Li1.5Ga0.5Ti1.5(PO4)3(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10~6 Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte. 展开更多
关键词 sintering temperature holding time CONDUCTIVITY cracks solid-state electrolyte
下载PDF
Spark Plasma Sintering of Boron Carbide Using Ti_(3)SiC_(2) as a Sintering Additive
11
作者 Hülya Biçer Mustafa Tuncer +3 位作者 Hasan Göçmez Iurii Bogomol Valerii Kolesnichenko Andrey Ragulya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期645-650,共6页
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide... Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness. 展开更多
关键词 reactive sintering SPS boron carbide MAX phase
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance
12
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Nanocrystalline Cemented Carbide
13
作者 陈先富 刘颖 +1 位作者 YE Jinwen WANG Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期664-672,共9页
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi... WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30. 展开更多
关键词 nano nitrogen cemented carbide sintering temperature MICROSTRUCTURE mechanical properties
下载PDF
Fabrication of YAG:Ce^(3+) and YAG:Ce^(3+),Sc^(3+) Phosphors by Spark Plasma Sintering Technique
14
作者 周卫新 娄朝刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期255-260,共6页
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ... In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength. 展开更多
关键词 high-temperature solid-state reaction spark plasma sintering yttrium aluminum garnet PHOSPHORS
下载PDF
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications
15
作者 Yongchul Yoo Xiang Zhang +4 位作者 Fei Wang Xin Chen Xing-Zhong Li Michael Nastasi Bai Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期146-154,共9页
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po... W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C. 展开更多
关键词 refractory high entropy alloy plasma-facing material fusion reactor spark plasma sintering
下载PDF
Effects of Diamond on the Mechanical Properties and Thermal Conductivity of Si_(3)N_(4)Composites Fabricated Using Spark Plasma Sintering
16
作者 GAO Ying LIU Di +6 位作者 WANG Aiyang ZHANG Song HE Qianglong REN Shifeng FANG Jie WANG Zihan WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1319-1324,共6页
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di... Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials. 展开更多
关键词 spark plasma sintering Si_(3)N_(4) DIAMOND thermal conductivity mechanical properties
下载PDF
Analyzing the Interplay of Sintering Conditions on Microstructure and Hardness in Indirect Additive Manufacturing of 17-4PH Stainless Steel
17
作者 Erika Lannunziata Mohammad Hossein Mosallanejad +2 位作者 Manuela Galati Gabriele Piscopo Abdollah Saboori 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第9期1611-1620,共10页
Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusio... Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusion additive manufacturing(ADAM),a variant of indirect AM methods,is a layer-wise indirect AM process recently developed based on fused deposition modeling and metal injection molding.However,there is still limited knowledge of the process conditions and material properties fabricated through this process,where sintering plays a crucial role in the final consolidation of parts.Therefore,this research,for the first time,systematically investigates the impact of various sintering conditions on the shrinkage,relative density,microstructure,and hardness of the 17-4PH ADAM samples.For this reason,as-washed samples were sintered under different time-temperature combinations.The sample density was evaluated using Archimedes,computed tomography,and image analysis methods.The outcomes revealed that sintering variables significantly impacted the density of brown 17-4PH Stainless Steel samples.The results indicated more than 99% relative densities,higher than the value reported by Markforged Inc.(~96%).Based on parallel porosities observed in the computed tomography results,it can be suggested that by modifying the infill pattern during printing,it would be possible to increase the final relative density.The microhardness of the sintered samples in this study was higher than that of the standard sample provided by Markforged Inc.Sintering at 1330℃ for 4 h increased the density of the printed sample without compromising its mechanical properties.According to X-ray diffraction analysis,the standard sample provided by Markforged Inc.and“1330℃—4 h”one had similar stable phases,although copper-rich intermetallics were more abundant in the microstructure of reference samples.This study is expected to facilitate the adoption of indirect metal AM methods by different sectors,thanks to the high achievable relative densities reported here. 展开更多
关键词 Indirect additive manufacturing Atomic diffusion additive manufacturing 17-4PH stainless steel Computed tomography sinterING
原文传递
Impact Analysis of Microscopic Defect Types on the Macroscopic Crack Propagation in Sintered Silver Nanoparticles
18
作者 Zhongqing Zhang Bo Wan +4 位作者 Guicui Fu Yutai Su Zhaoxi Wu Xiangfen Wang Xu Long 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期441-458,共18页
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t... Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs. 展开更多
关键词 sintered silver nanoparticles defect types microscopic defect evolution macroscopic crack propagation molecular dynamics simulation cohesive zone model
下载PDF
Feasibility Analysis of the Sintering Flue Gas Oxidation Method for Denitrification Technology Route
19
作者 Weiling Chu Linling Wu +1 位作者 Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第6期12-23,共12页
With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, t... With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, the commonly used denitrification methods include selective catalytic reduction (SCR), active coke, etc. As a newly developed denitrification technology, oxidation denitrification is not widely used, and the technical level is mixed, and there might be problems such as yellow smoke, secondary pollution and ozone escape in the practical application. In this paper, problems existing in the denitrification process of sintering flue gas oxidation are analyzed, and a 320 m2 sintering machine is taken as an example. Comparing the denitrification technology of sintering industry, it could be seen that the denitrification technology route of oxidation method has low pollution, low cost and high comprehensive environmental benefits, and has greatly potential development. 展开更多
关键词 sinterING Air Pollution Denitration by Oxidation
下载PDF
Pt nanoparticles entrapped in ordered mesoporous carbons:An efficient catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives 被引量:6
20
作者 李君瑞 李晓红 +1 位作者 丁玥 吴鹏 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1995-2003,共9页
Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, ... Pt nanoparticles entrapped in ordered mesoporous CMK-3 carbons with p6mm symmetry were prepared using a facile impregnation method, and the resulting materials were characterized using X-ray diffraction spectroscopy, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The Pt nanoparticles were highly dispersed in the CMK-3 with 43.7% dispersion. The Pt/CMK-3 catalyst was an effective catalyst for the liquid-phase hydrogenation of nitrobenzene and its derivatives under the experimental conditions studied here. The Pt/CMK-3 catalyst was more active than commercial Pt/C catalyst in most cases. A highest turnover frequency of 43.8 s-1 was measured when the Pt/CMK-3 catalyst was applied for the hydrogenation of 2-methyl-nitrobenzene in ethanol under optimal conditions. It is worthy of note that the Pt/CMK-3 catalyst could be recycled easily, and could be reused at least fourteen times without any loss in activity or selectivity for the hydrogenation of nitrobenzene in ethanol. 展开更多
关键词 Pt nanoparticle Nitrobenzene compound liquid-phase hydrogenation Ordered mesoporous carbon
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部