A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do...A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.展开更多
The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extrem...The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals.展开更多
Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normal...Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normally distributed random functions,we develop a corresponding pre-processing subprogram to establish a discrete network model of complex fracture distribution in HDR reservoirs;then construct a heat-fluid-solid finite element model for heat extraction via water injection and compare the numerical solution with the analytical solution of the one-dimensional non-isothermal consolidation problem for verification.The numerical simulation results show that the main factors affecting the heat extraction efficiency of HDR reservoirs include fracture width,fracture density,fracture permeability,and matrix permeability.When a HDR reservoir is injected with water for heat extraction,there is a certain threshold value of these influential parameters,beyond which the outlet temperature drops significantly,resulting in an obvious thermal breakthrough.When injecting water for heat extraction,the values of these parameters should be controlled and kept at a reasonable level,otherwise,the HDR reservoir may enter a thermal breakthrough stage in advance,which is not conducive for long-period heat extraction.Influenced by the random distribution of complex fractures,the leading edge of the cold front may present an irregular distribution.During the process of heat extraction,the stress gradually changes from a compressional state to a tensile state,which induces further damage to the HDR reservoir.展开更多
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat...To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.展开更多
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment...Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable.展开更多
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref...Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.展开更多
A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,whi...A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly.展开更多
This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,pisto...This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,piston set,lubricantfilm,liner and coolant in a whole engine cycle,and can predict the temperature fluc-tuation and distribution on piston crown,inner surface of liner,piston ring and thelubricant film.A computer program is developed to calculate the unsteady heat trans-fer process of piston-liner system in a water-cooled diesel engine.展开更多
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met...The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment.展开更多
Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simu...Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simulate the coupled heat and mass transfer across a membrane,total coupling equations and the expressions for the four characteristic parameters including the heat transfer coefficient,molardriven heat transfer coefficient,thermal-driven mass transfer coefficient,and mass transfer coefficient are derived and provided,with the Onsager’s reciprocal relation being confirmed to verify the rationality of the model.Calculations are conducted to investigate the effects of the membrane property and air state on the coupling transport process.The results show that the four characteristic parameters directly affect the transmembrane heat and mass fluxes:the heat and mass transfer coefficients are both positive,meaning that the temperature difference has a positive contribution to the heat transfer and the humidity ratio difference has a positive contribution to the mass transfer.The molar-driven heat transfer and thermal-driven mass transfer coefficients are both negative,implying that the humidity ratio difference acts to reduce the heat transfer and the temperature difference works to diminish the mass transfer.The mass transfer affects the heat transfer by 1%–2%while the heat transfer influences the mass transfer by7%–14%.The entropy generation caused by the temperature difference-induced heat transfer is much larger than that by the humidity difference-induced mass transfer.展开更多
A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics so...A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.展开更多
This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep ...This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure.展开更多
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel...Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can...The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.展开更多
Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rig...Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes.It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects.The effects of graphene chemical potential are discussed.It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons,surface phonon polaritons,hyperbolic phonon polaritons,and magnetic polaritons caused by the graphene strong coupling effects.Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects.Finally,the effects of cell grating filling ratio are investigated.The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio.This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system.展开更多
A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynami...A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynamics,whereas gas phase is discretized by finite volume method.Drag force,gas pressure gradient,and volume fraction are used to couple the two methods.The effect of injection velocities,particle sizes,and particle densities on bubble growth is analyzed using the coupled method.The simulation results,obtained for two-dimensional geometries,include the shape and diameter size of a bubble as a function of time;such results are compared with experimental data,previous numerical results,and other approximate model predictions reported in the literature.Moreover,the flow profiles of gas and particle phases and the temperature distribution by the heat transfer model around the forming bubble are also discussed.All results show that the coupled method efficiently describes of the bubble formation in fluidized beds.The proposed method is applicable for solving gas–solid two-phase flow in fluidization.展开更多
A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to dropl...A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region.The method relies on a Eulerian approach(used to capture droplet dynamics)and an unsteady heat transfer model(specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach).Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary,several simulations of ice accretion,melting and shedding,runback water flow and refreezing phenomena during the electrothermal deicing process are conducted.Finally,the results are verified via comparison with experimental data.A rich set of data concerning the dynamic evolution of the distribution of surface temperature,water film height and ice shape is presented and critically discussed.展开更多
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the...Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.展开更多
基金National Natural Science Foundation of China (21878102)
文摘A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Nos.D5000230066 and D5000210117)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2022JQ-358)。
文摘The electron-phonon interaction can reveal the microscopic mechanism of heat transfer in metals.The two-step heat conduction considering electron-phonon interaction has become an effective theoretical model for extreme environments,such as micro-scale and ultrafast processes.In this work,the two-step heat transfer model is further extended by considering the Burgers heat conduction model with the secondorder heat flux rate for electrons.Then,a novel generalized electron-phonon coupling thermoelasticity is proposed with the Burgers electronic heat transfer.Then,the problem of one-dimensional semi-infinite copper strip subject to a thermal shock at one side is studied by the Burgers two-step(BTS)model.The thermoelastic analytical solutions are systematically derived in the Laplace domain,and the numerical Laplace inversion method is adopted to obtain the transient responses.The new model is compared with the parabolic two-step(PTS)model and the hyperbolic two-step(HTS)model.The results show that in ultrafast heating,the BTS model has the same wave front jump as the HTS model.The present model has the faster wave speed,and predicts the bigger disturbed regions than the HTS model.More deeply,all two-step models also have the faster wave speeds than one-step models.This work may benefit the theoretical modeling of ultrafast heating of metals.
基金This work is financially supported by the National Science Foundation of China(Grant No.52192622,No.51936001,No.52274002,No.51804033 and No.U20A20265)Beijing Natural Science Foundation(Grant No.3222030)+2 种基金the PetroChina Science and Technology Innovation Foundation Project(2021DQ02e0201)the Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(Grant No.BIPTACF-002)the Fund of the Beijing Municipal Education Commission(Grant No.22019821001).
文摘Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normally distributed random functions,we develop a corresponding pre-processing subprogram to establish a discrete network model of complex fracture distribution in HDR reservoirs;then construct a heat-fluid-solid finite element model for heat extraction via water injection and compare the numerical solution with the analytical solution of the one-dimensional non-isothermal consolidation problem for verification.The numerical simulation results show that the main factors affecting the heat extraction efficiency of HDR reservoirs include fracture width,fracture density,fracture permeability,and matrix permeability.When a HDR reservoir is injected with water for heat extraction,there is a certain threshold value of these influential parameters,beyond which the outlet temperature drops significantly,resulting in an obvious thermal breakthrough.When injecting water for heat extraction,the values of these parameters should be controlled and kept at a reasonable level,otherwise,the HDR reservoir may enter a thermal breakthrough stage in advance,which is not conducive for long-period heat extraction.Influenced by the random distribution of complex fractures,the leading edge of the cold front may present an irregular distribution.During the process of heat extraction,the stress gradually changes from a compressional state to a tensile state,which induces further damage to the HDR reservoir.
基金Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of ChinaProject(08C26224302178) supported by the Innovation Foundation of Central South University,China
文摘To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30.
基金Project (No. 49671050) supported by the National Natural Science Foundation of China.
文摘Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable.
基金National Natural Science Foundation of China(Grant No.U1510131)Key Research and Development Projects of Shanxi Province of China(Grant Nos.201603D121010,201603D111004)+3 种基金Science and Technology Project of Jin Cheng City of China(Grant No.20155010)Youth Program of National Natural Science Fund of China(Grant No.51604181)Project of Young Scholar of Shanxi ProvinceLeading Talent Project of Innovative Entrepreneurial Team of Jiangsu Province(Grant No.51501122)
文摘Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process.
基金Project(51078127) supported by the National Natural Science Foundation of China
文摘A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly.
文摘This paper provides a numerical analysis model of unsteady heat trans-fer in piston-liner set of an internal combustion engine.The model simulates the un-steady heat transfer process among the combustion mixture,piston set,lubricantfilm,liner and coolant in a whole engine cycle,and can predict the temperature fluc-tuation and distribution on piston crown,inner surface of liner,piston ring and thelubricant film.A computer program is developed to calculate the unsteady heat trans-fer process of piston-liner system in a water-cooled diesel engine.
文摘The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment.
基金funded by Beijing Natural Science Foundation(3182015)。
文摘Non-equilibrium thermodynamics theory is used to analyze the transmembrane heat and moisture transfer process,which can be observed in a membrane-type total heat exchanger(THX).A theoretical model is developed to simulate the coupled heat and mass transfer across a membrane,total coupling equations and the expressions for the four characteristic parameters including the heat transfer coefficient,molardriven heat transfer coefficient,thermal-driven mass transfer coefficient,and mass transfer coefficient are derived and provided,with the Onsager’s reciprocal relation being confirmed to verify the rationality of the model.Calculations are conducted to investigate the effects of the membrane property and air state on the coupling transport process.The results show that the four characteristic parameters directly affect the transmembrane heat and mass fluxes:the heat and mass transfer coefficients are both positive,meaning that the temperature difference has a positive contribution to the heat transfer and the humidity ratio difference has a positive contribution to the mass transfer.The molar-driven heat transfer and thermal-driven mass transfer coefficients are both negative,implying that the humidity ratio difference acts to reduce the heat transfer and the temperature difference works to diminish the mass transfer.The mass transfer affects the heat transfer by 1%–2%while the heat transfer influences the mass transfer by7%–14%.The entropy generation caused by the temperature difference-induced heat transfer is much larger than that by the humidity difference-induced mass transfer.
基金Project supported by the National Natural Science Foundation of China (Nos. 50934002 and 50774011)the Postdoctoral Science Foundation of China (No. 20090450014)the DoctoralNatural Science Foundation of China (No. 20070008038)
文摘A mathematical model for heap bioleaching is developed to analyze heat transfer, oxygen flow, target ion distribution and oxidation leaching rate in the heap. The model equations are solved with Comsol Multiphysics software. Numerical simulation results show the following facts: Concentration of oxygen is relatively high along the boundary of the slope, and low in the center part where leaching rate is slow. Temper- ature is relatively low along the slope and reaches the highest along the bottom region near the slope, with difference being more than 6℃. Concentration of target mental ions is the highest in the bottom region near the slope. Oxidation leaching rate is relatively large in the bottom and slope part with a fast reaction rate, and small in the other part with low oxygen concentration.
文摘This work presents the results of a set of steady-state numerical simulations about heat transfer in hollow blocks in the presence of coupled natural convection,conduction and radiation.Blocks with two air cells deep in the vertical direction and three identical cavities in the horizontal direction are considered(typically used for building ceilings).Moreover,their outside horizontal surface is subjected to an incident solar flux and outdoor environment temperature while the inside surface is exposed to typical indoor environment conditions.The flows are considered laminar and two-dimensional over the whole range of parameters examined.The conservation equations are solved by means of a finite difference method based on the control volumes approach,relying on the SIMPLE algorithm for what concerns the coupling of pressure and velocity.The effects of the number of cells in the horizontal direction and the thermal conductivity on the heat transfer through the alveolar structure have been investigated.The results show that the number of holes has a significant impact on the value of the overall heat flux through the considered structure.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
基金financially supported by the National Natural Science Foundation of China(No.51778358)the Shanghai Municipality Natural Science Foundation(No.21ZR1434400)Sponsored by Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,Chongqing University,Chongqing 400045,China(LNTCCMA-20210103).
文摘The moisture performance of building envelopes largely depends on the building materials,construction tech-niques,and exposure loads from the indoor and outdoor regions.A ventilated air interlayer placed in a wall can help dehumidify the wall and indoor air.This paper presents an experimental study of the heat,air,and moisture variations within the envelope wall of a chamber featuring different air interlayer settings under real outdoor air conditions during the summer of 2020 in Shanghai,China.Self-developed humidity-controlling building mate-rials were applied to the inner building envelope.Temperature,humidity,wind velocity,and heat-flow sensors were placed at different positions in the middle of the wall.These parameters were measured and recorded in real-time under three working conditions:humidification,dehumidification,and ventilation.The experimental results show that under the ventilation working conditions,moisture content of 0.52 kg can be removed after a 2-h air layer ventilation,which can benefit the design strategy for the humidification and ventilation of dehu-midification walls.
基金supported by the National Natural Science Foundation of China(Grant No.52276075)sponsored by the Natural Science Foundation of Shanghai(Grant No.21ZR1433500)。
文摘Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes.It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects.The effects of graphene chemical potential are discussed.It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons,surface phonon polaritons,hyperbolic phonon polaritons,and magnetic polaritons caused by the graphene strong coupling effects.Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects.Finally,the effects of cell grating filling ratio are investigated.The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio.This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system.
基金The support of National Nature Science Foundation of China(No.51276192)No.61338 for the National Basic Research Program of Chinathe Innovative Research Project of Xi’an Hi-tech Institute(EPXY0806)are gratefully acknowledged.
文摘A coupled method describing gas–solid two-phase flow has been proposed to numerically study the bubble formation at a single orifice in gas-fluidized beds.Solid particles are traced with smoothed particle hydrodynamics,whereas gas phase is discretized by finite volume method.Drag force,gas pressure gradient,and volume fraction are used to couple the two methods.The effect of injection velocities,particle sizes,and particle densities on bubble growth is analyzed using the coupled method.The simulation results,obtained for two-dimensional geometries,include the shape and diameter size of a bubble as a function of time;such results are compared with experimental data,previous numerical results,and other approximate model predictions reported in the literature.Moreover,the flow profiles of gas and particle phases and the temperature distribution by the heat transfer model around the forming bubble are also discussed.All results show that the coupled method efficiently describes of the bubble formation in fluidized beds.The proposed method is applicable for solving gas–solid two-phase flow in fluidization.
基金supported by Rotor Aerodynamics Key Laboratory[Grant Number RAL20180401].
文摘A numerical method for the analysis of the electrothermal deicing system for an airfoil is developed taking into account mass and heat exchange at the moving boundary that separates the water film created due to droplet impingement and the ice accretion region.The method relies on a Eulerian approach(used to capture droplet dynamics)and an unsteady heat transfer model(specifically conceived for a multilayer electrothermal problem on the basis of the enthalpy theory and a phase-change correction approach).Through application of the continuous boundary condition for temperature and heat flux at the coupled movingboundary,several simulations of ice accretion,melting and shedding,runback water flow and refreezing phenomena during the electrothermal deicing process are conducted.Finally,the results are verified via comparison with experimental data.A rich set of data concerning the dynamic evolution of the distribution of surface temperature,water film height and ice shape is presented and critically discussed.
基金Project(51974278)supported by the National Natural Science Foundation of ChinaProject(E2018203446)supported by the Natural Science Foundation of Hebei Province Distinguished Young Fund Project,ChinaProject(2018YFA0707303)supported by the National Key Research and Development Project of China。
文摘Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip.