In this paper, the clustering behavior of solid particles in a two-dimensional (2D) liquid-solid fluidized-bed was studied by using the charge coupled devices (CCD) imaging measuring and processing technique and w...In this paper, the clustering behavior of solid particles in a two-dimensional (2D) liquid-solid fluidized-bed was studied by using the charge coupled devices (CCD) imaging measuring and processing technique and was characterized by fractal analysis. CCD images show that the distribution of solid particles in the 2D liquid-solid fluidised-bed is not uniform and self-organization behavior of solid particles was observed under the present experimental conditions. The solid particles move up in the 2D fluidized-bed in groups or clusters whose configurations are often in the form of horizontal strands. The box fractal dimension of the cluster images in the 2D liquid-solid fluidized-bed increases with the rising of solid holdup and reduces with the increment of solid particle diameter and superficial liquid velocity. At given solid holdup and solid particle size, the lighter particles show smaller fractal dimensions.展开更多
Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation...Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation/regeneration tests of the sorbent were carried out in a fluidized-bed reactor and the sorbent was characterized by X-ray diffraction and nitrogen adsorption. It is confirmed that TiO2 shows a positive effect on the adsorption process of Na2CO3 and the reaction rate is observed to increase significantly, especially in the first 10 min. Moreover, TiO2 is stable within the temperature range of the process and no other Ti-compounds are detected. The carbonation products are NaHCO3 and Na5H3 (CO3 )4. The surface area and the pore volume of the sorbent keep stable after 14 cycles. The Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy are used to analyze the effect mechanism of TiO2 on CO2 adsorption process of Na2CO3/Al2O3.展开更多
Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the ac...Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.展开更多
In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and h...In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.展开更多
The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized...The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized-bed pyrolysis of oil sand and the native bitumen obtained by solvent extraction.The results indicated that the fluidized-bed pyrolysis,a feasible carbon rejection process,can be used to upgrade oil sand.The reaction temperature and time were found to be the key operating parameters affecting the product distribution and yields in fluidized-bed pyrolysis of oil sand.The optimal temperature was 490℃ and the most suitable reaction time was 5 min.Under these operation conditions,the maximum yield of liquid product was 80wt%.In addition,the pyrolysis kinetics of oil sand at different heating rates of 5,10,20 and 30℃/min was investigated using a thermogravimetric analyzer(TGA).展开更多
For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production...For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1-3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone.展开更多
Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially M...Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis.展开更多
Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254...Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), tfihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.展开更多
This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of out...This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.展开更多
A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgener...A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgeneralized delta-rule (GDR) is used to train artificial neural network (ANN) in order to avoid search terminatedat a local optimal solution. For searching the global optimum, a new algorithm called SM-GA, incorporating ad-vantages of both simplex method (SM)and GA, is proposed and applied to optimize the operating conditions of anacrylonitrile fluidized-bed reactor in industry.展开更多
The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary ...The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.展开更多
Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th...Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.展开更多
The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC...The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC as well as the shell’s fracture surface were examined by optical microscopy and scanning electron microscopy, and the thermo-physical and mechanical properties of the shell were also tested. The results show that Al matrix has a net-like structure while SiC is uniformly distributed in the Al matrix. The SiCp/Al composites have a low density of 2.93 g/cm^3, and its relative density is 98.7%. Thermal conductivity of the composites is 175 W/(·K), coefficient of thermal expansion (CTE) is 10.3×10^-6 K-1 (25-400 ℃), compressive strength is 496 MPa, bending strength is 404.5 MPa, and the main fracture mode is brittle fracture of SiC particles accompanied by ductile fracture of Al matrix.Its thermal conductivity is higher than that of Si/Al alloy, and its CTE matches with that of the chip material.展开更多
Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for...Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for ruminants and equines,but there could be higher added value use for several components of the green biomass.Interest in green biorefin-ing has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels.Novel products derived from grass,such as paper and packaging,nanofibers,animal bedding,novel protein feeds,extracted proteins,biochemicals,nutraceuticals,bioactive compounds,biogas and biochar could create new sustainable business opportunities in rural areas.Most green biorefinery concepts focus on using fresh green biomass as the feedstock,but preservation of it by ensiling would provide several benefits such as all-year-around avail-ability of the feedstock and increased stability of the press juice and press cake.The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products,mainly lactic and acetic acids,that lower the pH of the silage so that it becomes stable in anaerobic conditions.This has some important consequences on the processability and quality of products,which are partly positive and partly negative,e.g.,degradation of protein into peptides,amino acids and ammonia.These aspects are discussed in this review.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains...The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.展开更多
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z...Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.展开更多
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t...Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.展开更多
This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatur...This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatures(20℃,30℃,40℃)and flow velocities(6 m/s,7 m/s,8 m/s,9 m/s,10 m/s)were studied separately.The results show that the weight loss rate of Q235B steel specimens after erosion-corrosion increases with increasing flow velocity and temperature.For the erosion-corrosion process,the corrosion rates of specimens increase with increasing flow velocity.The results of surface morphology show that the circular pits with clear edges are distributed randomly over specimen surface at low flow velocity,but the pit edge becomes vague at high flow velocity.With temperature increasing,the erosion-corrosion damage became serious as shown by the aggregation of large and small pits on specimen surface.The working mechanism of erosion-corrosion is found to vary with flow velocity and temperature.The relationships among erosion-corrosion components are quantitatively represented and show that synergy dominates the progress of material loss.Corrosion enhances erosion that is a dominant component in the synergy.The inactions of erosion-corrosion can be described by"synergistic"and"additive"behavior.The results show that"additive"effect becomes more significant with increasing flow velocity but decreases with increasing temperature,while"synergistic"effect is not sensitive to flow velocity and temperature.展开更多
基金the National Natural Science Foundation of China(Grant No.20576091)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the clustering behavior of solid particles in a two-dimensional (2D) liquid-solid fluidized-bed was studied by using the charge coupled devices (CCD) imaging measuring and processing technique and was characterized by fractal analysis. CCD images show that the distribution of solid particles in the 2D liquid-solid fluidised-bed is not uniform and self-organization behavior of solid particles was observed under the present experimental conditions. The solid particles move up in the 2D fluidized-bed in groups or clusters whose configurations are often in the form of horizontal strands. The box fractal dimension of the cluster images in the 2D liquid-solid fluidized-bed increases with the rising of solid holdup and reduces with the increment of solid particle diameter and superficial liquid velocity. At given solid holdup and solid particle size, the lighter particles show smaller fractal dimensions.
基金The National Natural Science Foundation of China(No.51476030)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110006)
文摘Abstract: In order to improve the reactivity of Na2CO3/Al2O3 sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3 with TiO2 using impregnation. Fourteen multi-cycle carbonation/regeneration tests of the sorbent were carried out in a fluidized-bed reactor and the sorbent was characterized by X-ray diffraction and nitrogen adsorption. It is confirmed that TiO2 shows a positive effect on the adsorption process of Na2CO3 and the reaction rate is observed to increase significantly, especially in the first 10 min. Moreover, TiO2 is stable within the temperature range of the process and no other Ti-compounds are detected. The carbonation products are NaHCO3 and Na5H3 (CO3 )4. The surface area and the pore volume of the sorbent keep stable after 14 cycles. The Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy are used to analyze the effect mechanism of TiO2 on CO2 adsorption process of Na2CO3/Al2O3.
文摘Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.
文摘In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.
基金the financial support provided by the National Science Foundation of China (21176252)the China National Petroleum Science Research Program (2011B-2404-01)
文摘The reaction behavior of oil sand from Inner Mongolia(China) were studied in a fluidizedbed pyrolysis process,and a comparative study was conducted on the properties of the liquid products obtained through fluidized-bed pyrolysis of oil sand and the native bitumen obtained by solvent extraction.The results indicated that the fluidized-bed pyrolysis,a feasible carbon rejection process,can be used to upgrade oil sand.The reaction temperature and time were found to be the key operating parameters affecting the product distribution and yields in fluidized-bed pyrolysis of oil sand.The optimal temperature was 490℃ and the most suitable reaction time was 5 min.Under these operation conditions,the maximum yield of liquid product was 80wt%.In addition,the pyrolysis kinetics of oil sand at different heating rates of 5,10,20 and 30℃/min was investigated using a thermogravimetric analyzer(TGA).
基金supported by the Chinese National Key Program (Grant No. 2011CB932602)Natural Science Foundation of China (Key Program, 51236004)the Beijing Key Scientific Program (D12110300160000)
文摘For the synthesis of single-walled carbon nanotubes (SWCNTs) from CH4 over a Fe/MgO catalyst, we proposed a coupled Downer-turbulent fluidized-bed (TFB) reactor to enhance the selectivity and yield (or production rate) of SWCNTs. By controlling a very short catalyst residence time (1-3 s) in the Downer, only part of Fe oxides can be reduced to form Fe nano particles (NPs) available for the growth of SWCNTs. The percentage of unreduced Fe oxides increased and the yield of SWCNTs decreased accordingly with the increase of catalyst feeding rate in Downer. SWCNTs were preferentially grown on the catalyst surface and inhibited the sintering of the Fe crystallites which would be formed thereafter in the downstream TFB, evidenced by TEM, Raman and TGA. The coupled Downer-turbulent fluidized-bed reactor technology allowed higher selectivity and higher production rate of SWCNTs as compared to TFB alone.
基金supported by the Deutsche Forschungsgemeinschaft (DFG)
文摘Performance of the oxidative coupling of methane in fluidized-bed reactor was experimentally investigated using Mn-Na2WO4/SiO2,La2O3/CaO and La2O3-SrO/CaO catalysts.These catalysts were found to be stable,especially Mn-Na2WO4/SiO2 catalyst.The effect of sodium content of this catalyst was analyzed and the challenge of catalyst agglomeration was addressed using proper catalyst composition of 2%Mn2.2%Na2WO4/SiO2.For other two catalysts,the effect of Lanthanum-Strontium content was analyzed and 10%La2O 3-20%SrO/CaO catalyst was found to provide higher ethylene yield than La2O3/CaO catalyst.Furthermore,the effect of operating parameters such as temperature and methane to oxygen ratio were also reviewed.The highest ethylene and ethane (C2) yield was achieved with the lowest methane to oxygen ratio around 2.40.5% selectivity to ethylene and ethane and 41% methane conversion were achieved over La2O3-SrO/CaO catalyst while over Mn-Na2WO4 /SiO2 catalyst,40% and 48% were recorded,respectively.Moreover,the consecutive effects of nitrogen dilution,ethylene to ethane production ratio and other performance indicators on the down-stream process units were qualitatively discussed and Mn-Na2WO4/SiO2 catalyst showed a better performance in the reactor and process scale analysis.
基金This work was supported by National Natural Science Foundation of China (No. 50408006).
文摘Objective To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofdm reactor (FBBR). Methods Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), tfihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3℃, however, it could quickly rise to over 50% above 3℃. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.
文摘This article presents a mathematical model of heat and mass transfer for the process of fluidized-bed spray granulation, which can be applied in the analysis of bed temperature profile, temperature and humidity of outlet gas and moisture content of particles. Effects of operation parameters on the batch granulation are investigated. The theoretical calculation agrees reasonably well with the experimental data.
文摘A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgeneralized delta-rule (GDR) is used to train artificial neural network (ANN) in order to avoid search terminatedat a local optimal solution. For searching the global optimum, a new algorithm called SM-GA, incorporating ad-vantages of both simplex method (SM)and GA, is proposed and applied to optimize the operating conditions of anacrylonitrile fluidized-bed reactor in industry.
文摘The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.
基金Project (ZR2011EL023) supported by the Natural Science Foundation of Shandong Province,ChinaProject (12CX04057A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.
文摘The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC as well as the shell’s fracture surface were examined by optical microscopy and scanning electron microscopy, and the thermo-physical and mechanical properties of the shell were also tested. The results show that Al matrix has a net-like structure while SiC is uniformly distributed in the Al matrix. The SiCp/Al composites have a low density of 2.93 g/cm^3, and its relative density is 98.7%. Thermal conductivity of the composites is 175 W/(·K), coefficient of thermal expansion (CTE) is 10.3×10^-6 K-1 (25-400 ℃), compressive strength is 496 MPa, bending strength is 404.5 MPa, and the main fracture mode is brittle fracture of SiC particles accompanied by ductile fracture of Al matrix.Its thermal conductivity is higher than that of Si/Al alloy, and its CTE matches with that of the chip material.
基金the funding from project GrassProtein received from the Ministry of Agriculture and Forestry of Finland/Makera (VN/7679/2021)
文摘Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for ruminants and equines,but there could be higher added value use for several components of the green biomass.Interest in green biorefin-ing has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels.Novel products derived from grass,such as paper and packaging,nanofibers,animal bedding,novel protein feeds,extracted proteins,biochemicals,nutraceuticals,bioactive compounds,biogas and biochar could create new sustainable business opportunities in rural areas.Most green biorefinery concepts focus on using fresh green biomass as the feedstock,but preservation of it by ensiling would provide several benefits such as all-year-around avail-ability of the feedstock and increased stability of the press juice and press cake.The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products,mainly lactic and acetic acids,that lower the pH of the silage so that it becomes stable in anaerobic conditions.This has some important consequences on the processability and quality of products,which are partly positive and partly negative,e.g.,degradation of protein into peptides,amino acids and ammonia.These aspects are discussed in this review.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金financial support from the school-enterprise cooperation projects(2019-KYY-508101-0078).
文摘The reduction of phosphogypsum(PG)to lime slag and SO_(2)using coke can effectively alleviate the environmental problems caused by PG.However,the PG decomposition temperature remains high and the product yield remains poor.By adding additives,the decomposition temperature can be further reduced and PG decomposition rate and product yield can be improved.However,the use of current additives such as Fe_(2)O_(3)and SiO_(2)brings the problem of increasing economic cost.Therefore,it is proposed to use solid waste copper slag(CS)as a new additive to reduce PG to prepare SO2,which can reduce the cost and meet the environmental benefits at the same time.The effects of proportion,temperature and thermostatic time on PG decomposition are investigated by experimental and kinetic analysis combined with FactSage thermodynamic calculations to optimize the roasting conditions.Finally,the reaction mechanism is proposed.It is found that adding CS to the coke and PG system can increase the rate of PG decomposition and SO_(2)yield while lowering the PG decomposition temperature.For example,when the CS/PG mass ratio increases from 0 to 1,PG decomposition rate increases from 83.38%to 99.35%,SO_(2)yield increases from 78.62%to 96.81%,and PG decomposition temperature decreases from 992.4℃to 949.6℃.The optimal reaction parameters are CS/PG mass ratio of 1,Coke/PG mass ratio of 0.06 at 1100℃for 20 min with 99.35%PG decomposition rate and 96.81%SO_(2) yield.The process proceeds according to the following reactions:2CaSO_(4)+ 0.7C + 0.8Fe_(2)SiO_(4)→0.8Ca_(2)SiO_(4)+ 0.2Ca_(2)Fe_(2)O_(5)+ 0.4Fe_(3)O_(4)+2SO_(2)+ 0.7CO_(2)Finally,a process for decomposing PG with coke and CS is proposed.
基金the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)by the Strategic Academic Leadership Program“Priority 2030”(No.K2-2022-001)For the sample preparation and TEM investigation,the authors thank the Collective Use Equipment Center“Material Science and Metallurgy”for the equipment modernization program represented by the Ministry of Higher Education and Science of Russian Federation(No.075-15-2021-696).
文摘Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.
基金supported by the Science Foundation of China University of Petroleum,Beijing(No.ZX20230047)Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shenma Group(No.41040220201308).
文摘Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.
基金supported by National Natural Science Foundation of China(Grant No.51876221No.51776225)+1 种基金High-end Foreign Expert Introduction Project(G20190001270B18054)。
文摘This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatures(20℃,30℃,40℃)and flow velocities(6 m/s,7 m/s,8 m/s,9 m/s,10 m/s)were studied separately.The results show that the weight loss rate of Q235B steel specimens after erosion-corrosion increases with increasing flow velocity and temperature.For the erosion-corrosion process,the corrosion rates of specimens increase with increasing flow velocity.The results of surface morphology show that the circular pits with clear edges are distributed randomly over specimen surface at low flow velocity,but the pit edge becomes vague at high flow velocity.With temperature increasing,the erosion-corrosion damage became serious as shown by the aggregation of large and small pits on specimen surface.The working mechanism of erosion-corrosion is found to vary with flow velocity and temperature.The relationships among erosion-corrosion components are quantitatively represented and show that synergy dominates the progress of material loss.Corrosion enhances erosion that is a dominant component in the synergy.The inactions of erosion-corrosion can be described by"synergistic"and"additive"behavior.The results show that"additive"effect becomes more significant with increasing flow velocity but decreases with increasing temperature,while"synergistic"effect is not sensitive to flow velocity and temperature.