期刊文献+
共找到6,316篇文章
< 1 2 250 >
每页显示 20 50 100
Liquid-solid mass transfer in a rotating packed bed reactor with structured foam packing 被引量:2
1
作者 Yazhao Liu Zhi hao Li +3 位作者 Guangwen Chu Lei Shao Yong Luo Jianfeng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2507-2512,共6页
A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor ... A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction. 展开更多
关键词 Rotating packed bed Liquid–solid mass transfer Structured foam packing Process intensification
下载PDF
The dual action of N_(2)on morphology regulation and mass-transfer acceleration of CO_(2)hydrate film
2
作者 Jinrong Zhong Yu Tian +6 位作者 Yifei Sun Li Wan Yan Xie Yujie Zhu Changyu Sun Guangjin Chen Yuefei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期120-129,共10页
The morphology characteristics of CH_(4),CO_(2),and CO_(2)+N_(2)hydrate film forming on the suspending gas bubbles are studied using microscopic visual method at supercooling conditions from 1.0 to 3.0 K.The hydrate f... The morphology characteristics of CH_(4),CO_(2),and CO_(2)+N_(2)hydrate film forming on the suspending gas bubbles are studied using microscopic visual method at supercooling conditions from 1.0 to 3.0 K.The hydrate film vertical growth rate and thickness along the planar gas-water interface are measured to study the hydrate formation kinetics and mass transfer process.Adding N_(2)in the gas mixture plays the same role as lowering the supercooling conditions,both retarding the crystal nucleation and growth rates,which results in larger single crystal size and rough hydrate morphology.N_(2)in the gas mixture helps to delay the secondary nucleation on the hydrate film,which is beneficial to maintain the porethroat structure and enhance the mass transfer.The vertical growth rate of hydrate film mainly depends on the supercooling conditions and gas compositions but has weak dependence on the experimental temperature and pressure.Under the same gas composition condition,the final film thickness shows a linear relationship with the supercooling conditions.The mass transfer coefficient of CH_(4)molecules in hydrates ranges from 4.54×10^(-8)to 7.54×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1).The maximum mass transfer coefficient for CO_(2)t N_(2)hydrate occurs at the composition of 60%CO_(2)t 40%N_(2),which is 3.98×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1). 展开更多
关键词 Gas hydrate MORPHOLOGY Secondary nucleation Formation kinetics mass transfer
下载PDF
Effect of surfactant frequently used in soil flushing on oxygen mass transfer in micro-nano-bubble aeration system
3
作者 Mei Bai Zhibin Liu +3 位作者 Zhu Liu Chenfei He Zhanhuang Fan Miaoxin Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期174-181,共8页
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s... In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy. 展开更多
关键词 Soil flushing Micro-nano-bubble aeration Bio-surfactant mass transfer coefficient
下载PDF
PVDF-assisted pyrolysis strategy for corrugated plate oxygen electrocatalysis nanoreactor:Simultaneously realizing efficient active sites and rapid mass transfer
4
作者 Chenxi Xu Liang Chen +6 位作者 Haihui Zhou Shifeng Qin Zhaohui Hou Yangyang Chen Jiale Sun Junwei Xu Zhongyuan Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期612-621,I0013,共11页
Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution rea... Though Zn-air batteries(ZABs)are one of the most promising system for energy storage and conversion,challenge still persists in its commercial application due to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).Hereby,a polyvinylidene fluoride(PVDF)-assisted pyrolysis strategy is proposed to develop a novel corrugated plate-like bifunctional electrocatalyst using two-dimensional zeolitic imidazolate frameworks(2D ZIF-67)as the precursor.The employed PVDF plays an important role in inheriting the original 2D structure of ZIF-67 and modulating the composition of the final products.As a result,a corrugated plate-like electrocatalyst,high-density Co nanoparticles decorated 2D Co,N,and F tri-doped carbon nanosheets,can be obtained.The acquired electrocatalyst enables efficient active sites and rapid mass transfer simultaneously,thus showing appreciable electrocatalytic performance for rechargeable Zn-air batteries.Undoubtedly,our proposed strategy offers a new perspective to the design of advanced oxygen electrocatalysts. 展开更多
关键词 Active sites mass transfer Corrugated plate Oxygen electrocatalyst Zn-air batteries
下载PDF
Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer
5
作者 Heng Zhang Chao Su +2 位作者 Xiaohu Chen Zhizhong Song Weijie Zhan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2977-3000,共24页
Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th... Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location. 展开更多
关键词 Conjugate heat transfer temperature field mass concrete creep stress
下载PDF
Effect of bipolar-plates design on corrosion,mass and heat transfer in proton-exchange membrane fuel cells and water electrolyzers:A review
6
作者 Jiuhong Zhang Xiejing Luo +2 位作者 Yingyu Ding Luqi Chang Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1599-1616,共18页
Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)ar... Attaining a decarbonized and sustainable energy system,which is the core solution to global energy issues,is accessible through the development of hydrogen energy.Proton-exchange membrane water electrolyzers(PEMWEs)are promising devices for hydrogen production,given their high efficiency,rapid responsiveness,and compactness.Bipolar plates account for a relatively high percentage of the total cost and weight compared with other components of PEMWEs.Thus,optimization of their design may accelerate the promotion of PEMWEs.This paper reviews the advances in materials and flow-field design for bipolar plates.First,the working conditions of proton-exchange membrane fuel cells(PEMFCs)and PEMWEs are compared,including reaction direction,operating temperature,pressure,input/output,and potential.Then,the current research status of bipolar-plate substrates and surface coatings is summarized,and some typical channel-rib flow fields and porous flow fields are presented.Furthermore,the effects of materials on mass and heat transfer and the possibility of reducing corrosion by improving the flow field structure are explored.Finally,this review discusses the potential directions of the development of bipolar-plate design,including material fabrication,flow-field geometry optimization using threedimensional printing,and surface-coating composition optimization based on computational materials science. 展开更多
关键词 bipolar-plates flow design mass and heat transfer CORROSION water electrolyzers fuel cells
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
7
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT Heat and mass transfer
下载PDF
Discharge and mass transfer characteristics of atmospheric pressure gas-solid two-phase gliding arc
8
作者 Min ZHU Yuchen PING +2 位作者 Yinghao ZHANG Chaohai ZHANG Shuqun WU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期88-96,共9页
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the... In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder. 展开更多
关键词 gliding arc discharge atmospheric pressure plasma multiphase discharge mass transfer
下载PDF
Structural engineering of Fe single-atom oxygen reduction catalyst with high site density and improved mass transfer
9
作者 Jiawen Wu Yuanzhi Zhu +3 位作者 An Cai Xiaobin Fan Wenchao Peng Yang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期634-644,共11页
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re... Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications. 展开更多
关键词 Single-atom catalysts Oxygen reduction reaction Structural engineering Active site density mass transfer Zinc-air batteries
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
10
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE mass transfer Wire mesh coupling solid particles Particle image velocimetry Hydrodynamics
下载PDF
Heat and Mass Transfer on Non-Newtonian Peristaltic Flow in a Channel in Presence of Magnetic Field: Analytical and Numerical Analysis
11
作者 Md. Maruf Hasan Md. Enamul Karim Md. Abdus Samad 《Applied Mathematics》 2024年第8期568-583,共16页
A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a... A study has been arranged to investigate the flow of non-Newtonian fluid in a vertical asymmetrical channel using peristalsis. The porous medium allows the electrically conductive fluid to flow in the channel, while a uniform magnetic field is applied perpendicular to the flow direction. The analysis takes into account the combined influence of heat and mass transfer, including the effects of Soret and Dufour. The flow’s non-Newtonian behavior is characterized using a Casson rheological model. The fluid flow equations are examined within a wave frame of reference that has a wave velocity. The analytic solution is examined using long wavelengths and a small Reynolds number assumption. The stream function, temperature, concentration and heat transfer coefficient expressions are derived. The bvp4c function from MATLAB has been used to numerically solve the transformed equations. The flow characteristics have been analyzed using graphs to demonstrate the impacts of different parameters. 展开更多
关键词 Stream Function mass transfer Vertical Channel Casson Fluid
下载PDF
Mass Transfer-Promoted Fe^(2+)/Fe^(3+)Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable Advanced Oxidation Processes
12
作者 Weiyang Lv Hao Li +6 位作者 Jinhui Wang Lixin Wang Zenglong Wu Yuge Wang Wenkai Song Wenkai Cheng Yuyuan Yao 《Engineering》 SCIE EI CAS CSCD 2024年第5期264-275,共12页
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c... Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment. 展开更多
关键词 Advanced oxidation processes 3D co-catalyst Flow-through mode Enhanced mass transfer Complex wastewater treatment
下载PDF
Mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate reverse micelles
13
作者 Chenxian Yang Tianci Li +5 位作者 Tingwei Zhu Xiaojie Duan Yibao Chen Yandong Xu Fusheng Chen Kunlun Liu 《Grain & Oil Science and Technology》 CAS 2024年第1期60-67,共8页
The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer... The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification. 展开更多
关键词 AOT reverse micelles Peanut protein KINETICS Shrinking core model mass transfer
下载PDF
Analysis and modeling of alumina dissolution based on heat and mass transfer 被引量:3
14
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1648-1656,共9页
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use... A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process. 展开更多
关键词 aluminum reduction cell alumina particles dissolution process heat and mass transfer finite difference method
下载PDF
Mass transfer process in replacement-column purification device in zinc hydrometallurgy 被引量:3
15
作者 周萍 李冬梅 陈卓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2660-2664,共5页
It is important to remove the impurities, such as copper and cadmium, from leaching solution in zinc hydrometallurgy. To improve purification efficiency, a replacement-column purification device was proposed and its m... It is important to remove the impurities, such as copper and cadmium, from leaching solution in zinc hydrometallurgy. To improve purification efficiency, a replacement-column purification device was proposed and its mass transfer characteristics and purification efficiency were experimentally studied. The results show that purification efficiency increases with the decrease of the zinc powder diameter and decreases with the increase of solution velocity. If appropriate structure and operation parameters are used, it is possible to make purification efficiency more than 99%, but the diameter of zinc powder should be larger than 0.45 mm. For the velocity of 0.05-0.7 cm/s, mass transfer coefficient kc is in the range of 3.94×10-7-2.76×10-6 m/s, and increases with the decrease of zinc powder diameter and the increase of solution velocity. Moreover, it can be derived by mass transfer correlations of Sherwood number:Sh=0.1069Re0.5Sc0.33, for 0.3<Re<6. 展开更多
关键词 zinc hydrometallurgy purification of copper and cadmium replacement column mass transfer behavior
下载PDF
Mass transfer model,preparation and applications of zeolite membranes for pervaporation dehydration:A review 被引量:12
16
作者 Chun Zhang Li Peng +1 位作者 Ji Jiang Xuehong Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1627-1638,共12页
Pervaporation(including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the sepa... Pervaporation(including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the separation and purification of organic solvents. Dehydration is an important step in the production and recovery of organic solvents. Zeolite membranes have attracted wide attention for pervaporation dehydration due to their high separation performance and good thermal/chemical stability. So far, zeolite membranes have been preliminarily industrialized for dehydration of organic solvents. This paper reviews the recent development of zeolite membranes for pervaporation dehydration, including mass transfer models, preparation and applications of zeolite membranes. The review also discusses the current industrial applications of zeolite membranes and their future development in pervaporation. 展开更多
关键词 ZEOLITE MEMBRANE PERVAPORATION ORGANIC SOLVENT DEHYDRATION mass transfer
下载PDF
Shear Alteration, Mass Transfer and Gold Mineralization: An Example from Jiaodong Ore Deposit Concentrating Area, Shandong, China 被引量:19
17
作者 Deng Jun Zhai Yusheng Wang Jianping Faculty of Earth Sciences and Mineral Resources, China University of Geosciences, Beijing 100083, China Yang Liqiang Institute of Geophysics, Chinese Academy of Sciences, Beijing 100101, China Fang Yun Faculty of 《Journal of Earth Science》 SCIE CAS CSCD 2000年第3期87-93,共7页
Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens’ equation, Grant’s isocon diagram and O’hara microelement ca... Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens’ equation, Grant’s isocon diagram and O’hara microelement calculation method, a thorough study on shear alteration, mass transfer and gold mineralization was carried out. The authors also made mathematic simulation and geochemical analysis. The work reveals temporal spatial changing regularities of temperature field and velocity field of fluids, and also reveals fluid transport chemical reaction coupling metallogenic dynamics of the Jiaojia gold ore concentrating area. During shear alteration process of the Jiaodong gold ore concentrating area, all kinds of components transferred with different amounts, fluid rock ratio was rather high and volume strain was of dilation type. Fast flow of ore forming fluid favors the occurrence of mixed fluid. Shear fractured zones are places where there was strong transportation reaction coupling mineralization. Ore bodies were located in dilation space of shear structure where there was the greatest fluid flux. After the emplacement of the rock body, a convex heat field was formed around the rock body. It is one of the main metallogenic forces. The major reason for mineralization is the mobilization, migration and enrichment of ore forming elements induced by shear compressive extensional tectonism. Inclusion gold dominant low grade ores were formed in the early ore forming stage, while high grade ores, which contained fissure gold and polymetallic veinlets, were formed in late ore forming stage. 展开更多
关键词 shear alteration mass transfer transportation reaction coupling ore forming process.
下载PDF
Mass transfer in the absorption of SO_2 and NO_x using aqueous euchlorine scrubbing solution 被引量:7
18
作者 DESHWAL Bal-Raj LEE Hyung-Keun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第2期155-161,共7页
Attempts have been made to generate euchlorine gas by chlorate-chloride process and to utilize it further to clean up SO2 and NOx from the flue gas in a lab scale bubbling reactor. Preliminary experiments were carded ... Attempts have been made to generate euchlorine gas by chlorate-chloride process and to utilize it further to clean up SO2 and NOx from the flue gas in a lab scale bubbling reactor. Preliminary experiments were carded out to determine the gas and liquid phase mass transfer coefficients and their correlation equations have been established. Simultaneous removal of SO2 and NOx from the simulated flue gas using aqueous euchlorine scrubbing solution has been investigated. Euchlorine oxidized NO into NO2 completely and the later subsequently absorbed into the scrubbing solution in the form of nitrate. SO2 removal efficiency around 100% and NOx removal efficiency around 72% were achieved under optimal conditions. Mass balance has been confirmed by analyzing the sulfate, nitrate, euchlorine and chloride ion using ion chromatograph/auto-titrator and comparing it with their corresponding calculated values. 展开更多
关键词 mass transfer sulfur dioxide nitric oxide bubbling reactor euchlorine
下载PDF
Gas–liquid mass transfer and flow phenomena in the Peirce–Smith converter: a water model study 被引量:5
19
作者 Xing Zhao Hong-liang Zhao +1 位作者 Li-feng Zhang Li-qiang Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期37-44,共8页
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a... A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively. 展开更多
关键词 Peirce-Smith converter water model mass transfer flow phenomena volumetric mass transfer coefficient
下载PDF
Experiment and finite element method analysis mass erosion and transfer of Ag/La_2NiO_4-based electrical contacts during operation 被引量:8
20
作者 Song Chen Wei-Ming Guan +2 位作者 Kun-Hua Zhang Zhi-Long Tan Ming Xie 《Rare Metals》 SCIE EI CAS CSCD 2013年第1期93-99,共7页
A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 elec... A uniform transient temperature field model of electrical contacts operation was found by analyzing the process of closing arc constriction resistance Joule heat ~ breaking arc. Essential parameters of Ag/La2NiO4 electrical contact material for transient temperature field calculation were obtained through tests of electrical contact experimental instrument under 18 V DC in different cur- rents, other correlation experiments, and calculation anal- ysis. The finite element method was applied to solve the transient temperature field, and the features and distribution of the transient temperature field were obtained. The condition of material erosion and mass transfer can be forecasted by those calculation results. It is beneficial to research about the lifetime of Ag/La2NiO4 electrical material. 展开更多
关键词 Electrical contact Finite element mass transfer EROSION Temperature field model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部