A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-sol...Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-solid two-phase flow characteristics of the fluid flow method bed, the applicability of the model to assess the drag. Different effects of a two-stage flow characteristics of fluidized bed flow characteristics, fluid and operating conditions affect the physical properties of the paper. We found from the simulation is the use of different drag coefficient models will greatly affect the results, which drag force model Syamlal - O' Brien is more suited to study the coupling characteristics of liquid flow in a fluidized bed of solid than Gidaspow. And velocity of the inert particles increase with the viscosity of the liquid increase. Further, the maximum speed of the inert particles in a fluidized bed by a central, which means the settling velocity in the fluidized bed of inert particles is the slowest; increasing liquid density and lead to increased speed of the inert particles; volume of the inert particles Score changes can also affect the speed of the particle velocity distribution, and there is no linear relationship.展开更多
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by disperse...A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed.展开更多
A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of min...A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.展开更多
The gas-solid reaction process with wide particle size distribution is extensively used in the chemical engineering field,especially the particle reacts with the gas gradually,such as fluorination reactions in fluidiz...The gas-solid reaction process with wide particle size distribution is extensively used in the chemical engineering field,especially the particle reacts with the gas gradually,such as fluorination reactions in fluidized beds.When the computational fluid dynamics-discrete element method(CFD-DEM)is used for the coupling simulation of multiphase and polydisperse particle reaction system,the grid size directly affects the accuracy of flow field information and simulation of chemical reaction.Furthermore,particle calculation time step will directly affect the efficiency of coupling calculation.In this work,a local grid and time step refinement method is proposed to simulate multiphase and polydisperse particle fluid-ization reaction system.In this method,the refined DEM grids are automatically generated in the computational domain around the fine particles,and the detailed fluid phase information is obtained with the interpolation algorithm.In the two-phase coupling process,particles are divided into different groups based on physical properties,each group has its own independent time step.The multistage conical-cylindrical spouted bed is proposed for the fluorination reaction process;the operating gas ve-locity range of the polydisperse particle system is extended by the new design while the particle size distribution changes with the gas-solid reaction process.It is demonstrated that the local grid and time step refinement method can improve the accuracy and efficiency of the traditional CFD-DEM method in the reaction process simulation,which describes a polydisperse particle system with wide particle size distribution.Aimed at improving the simulation accuracy and efficiency,this paper will be helpful for simulating the particle reaction process in the gas-solid fluidized bed and beneficial for the development of the CFD-DEM method.展开更多
A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A com...A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,展开更多
An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is val...An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is validated.The protein concentration profiles simulated with this model agree well with published experimental results.This model enables direct determination of turbulent mass diffusivity,removing the need to empirically guess a constant turbulent Schmidt number for simulating mass transfer in a turbulent flow.This model is useful when the turbulent mass diffusivity is not available for simulating mass transfer in an LSCFB riser.展开更多
Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured ...Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible.展开更多
To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulati...To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal.展开更多
Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, ...Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds.展开更多
A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, ...A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach展开更多
Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investi...Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.展开更多
A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature ex...A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature external cooler of ammonium chloride solution in soda ash production.Wall-scaling prevention performance of the cooling process is experimentally evaluated using convection and overall coefficients,enhancement factor,wall temperature and fouling resistance.Effects of different volume fractions of added particles,particle size,superficial liquid velocity,and cooling medium temperature on heat transfer are examined.Under present conditions,convection coefficient of liquid-solid flow inside the tube of external cooler is higher than that of the liquid phase flow,increased by 0.7–2.8 times,enhancing cooling performance obviously.Convection coefficient initially increases and then decreases as the volume fraction of added particles increases,reaching its maximum value at a volume fraction of 2.0%.The wall-scaling prevention effect of glass beads mainly depends on the volume fraction of added particles;optimal anti-fouling effects are achieved when adding particles at a volume fraction of 2.0%,regardless of changes in superficial liquid velocity or cooling medium temperature.This study lays a foundation for industrial applications of this new technique of fluidized bed external coolers.展开更多
Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-struct...Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.展开更多
To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver...To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver.In this design,downward-moving particles are subjected to the action of an up-flow gas to reduce the falling speed and enhance the radial disturbance,and hence increase the residence time of particles and improve the heat transfer.A cold-mold visual experimental setup is established.The influence factors are investigated experimentally,including the superficial gas velocity,solid flux,aeration gas,particle size and transport tube diameter.The results indicate that the maximum solid holdup can exceed 9%or so with fine particles of diameter d_(p)=113.5 μm and a tube diameter of 40 mm.It is proved that the CCFB can operate stably and adjust the solid flux rapidly.The results of this study provide a new structure for PSRs in the concentrated solar power field and could fill the research insufficiency in the gas-solid counterflow field.展开更多
A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is us...A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.展开更多
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.
文摘Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-solid two-phase flow characteristics of the fluid flow method bed, the applicability of the model to assess the drag. Different effects of a two-stage flow characteristics of fluidized bed flow characteristics, fluid and operating conditions affect the physical properties of the paper. We found from the simulation is the use of different drag coefficient models will greatly affect the results, which drag force model Syamlal - O' Brien is more suited to study the coupling characteristics of liquid flow in a fluidized bed of solid than Gidaspow. And velocity of the inert particles increase with the viscosity of the liquid increase. Further, the maximum speed of the inert particles in a fluidized bed by a central, which means the settling velocity in the fluidized bed of inert particles is the slowest; increasing liquid density and lead to increased speed of the inert particles; volume of the inert particles Score changes can also affect the speed of the particle velocity distribution, and there is no linear relationship.
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金This work was financially supported by the Education Ministry of China
文摘A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed.
基金This work was financially supported by the National Natural Science Foundation of China (No.50406025).
文摘A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision, break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.
基金supported by the National Youth Talent Support Program(grant No.20224723061)the National S&T Major Project of China(grant No.ZX06901).
文摘The gas-solid reaction process with wide particle size distribution is extensively used in the chemical engineering field,especially the particle reacts with the gas gradually,such as fluorination reactions in fluidized beds.When the computational fluid dynamics-discrete element method(CFD-DEM)is used for the coupling simulation of multiphase and polydisperse particle reaction system,the grid size directly affects the accuracy of flow field information and simulation of chemical reaction.Furthermore,particle calculation time step will directly affect the efficiency of coupling calculation.In this work,a local grid and time step refinement method is proposed to simulate multiphase and polydisperse particle fluid-ization reaction system.In this method,the refined DEM grids are automatically generated in the computational domain around the fine particles,and the detailed fluid phase information is obtained with the interpolation algorithm.In the two-phase coupling process,particles are divided into different groups based on physical properties,each group has its own independent time step.The multistage conical-cylindrical spouted bed is proposed for the fluorination reaction process;the operating gas ve-locity range of the polydisperse particle system is extended by the new design while the particle size distribution changes with the gas-solid reaction process.It is demonstrated that the local grid and time step refinement method can improve the accuracy and efficiency of the traditional CFD-DEM method in the reaction process simulation,which describes a polydisperse particle system with wide particle size distribution.Aimed at improving the simulation accuracy and efficiency,this paper will be helpful for simulating the particle reaction process in the gas-solid fluidized bed and beneficial for the development of the CFD-DEM method.
基金supported by the Discovery Grant and Engage Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,
基金This work was supported by the Open Foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-19B04).
文摘An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is validated.The protein concentration profiles simulated with this model agree well with published experimental results.This model enables direct determination of turbulent mass diffusivity,removing the need to empirically guess a constant turbulent Schmidt number for simulating mass transfer in a turbulent flow.This model is useful when the turbulent mass diffusivity is not available for simulating mass transfer in an LSCFB riser.
文摘Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible.
基金the financial support by the National Natural Science Foundation of China(No.51774283,No.51904096,No.52004086)the research fund of Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources(Henan Polytechnic University)(KCF202005)the research fund of Henan Key Laboratory of Coal Green Conversion(Henan Polytechnic University)(CGCF201906).
文摘To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal.
文摘Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds.
文摘A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach
基金support provided by King Abdulaziz City for Science and Technology(KACST)through the Science&Technology Unit at King Fahd University of Petroleum&Minerals(KFUPM)for funding of this work,project No.NSTIP#13-WAT96-04,as part of the National Science,Technology and Innovation Plan.
文摘Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.
基金supported by the Natural Science Foundation of Tianjin City(grant No.22JCQNJC00550)Open Research Fund of State Key Laboratory of Multiphase Complex Systems(grant No.MPCS-2021-D-06).
文摘A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature external cooler of ammonium chloride solution in soda ash production.Wall-scaling prevention performance of the cooling process is experimentally evaluated using convection and overall coefficients,enhancement factor,wall temperature and fouling resistance.Effects of different volume fractions of added particles,particle size,superficial liquid velocity,and cooling medium temperature on heat transfer are examined.Under present conditions,convection coefficient of liquid-solid flow inside the tube of external cooler is higher than that of the liquid phase flow,increased by 0.7–2.8 times,enhancing cooling performance obviously.Convection coefficient initially increases and then decreases as the volume fraction of added particles increases,reaching its maximum value at a volume fraction of 2.0%.The wall-scaling prevention effect of glass beads mainly depends on the volume fraction of added particles;optimal anti-fouling effects are achieved when adding particles at a volume fraction of 2.0%,regardless of changes in superficial liquid velocity or cooling medium temperature.This study lays a foundation for industrial applications of this new technique of fluidized bed external coolers.
文摘Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.
基金financially supported by the National Natural Science Foundation of China(Grant No.:52130607,51821004).
文摘To design a particle solar receiver(PSR),a vital energy conversion system,is still a bottleneck for researchers.This study presents a novel PSR based on countercurrent fluidized bed(CCFB)technology,named CCFB receiver.In this design,downward-moving particles are subjected to the action of an up-flow gas to reduce the falling speed and enhance the radial disturbance,and hence increase the residence time of particles and improve the heat transfer.A cold-mold visual experimental setup is established.The influence factors are investigated experimentally,including the superficial gas velocity,solid flux,aeration gas,particle size and transport tube diameter.The results indicate that the maximum solid holdup can exceed 9%or so with fine particles of diameter d_(p)=113.5 μm and a tube diameter of 40 mm.It is proved that the CCFB can operate stably and adjust the solid flux rapidly.The results of this study provide a new structure for PSRs in the concentrated solar power field and could fill the research insufficiency in the gas-solid counterflow field.
文摘A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser.