The electrochemical properties of multiphases Zn 4Sb 3C 7 and ZnSbC 2 as new lithium ion anode materials were investigated. The composition and microstructures of these multiphase materials were analyzed by XRD and TE...The electrochemical properties of multiphases Zn 4Sb 3C 7 and ZnSbC 2 as new lithium ion anode materials were investigated. The composition and microstructures of these multiphase materials were analyzed by XRD and TEM. It was found that the addition of graphite modifies the microstructures of pure alloys. The capacities and the cycle stability of the anodes are greatly improved. The reversible capacity of Zn 4Sb 3C 7 reaches as high as 510 mAh/g at the first cycle, and keeps higher than 300 mAh/g after 10 charge/discharge cycles.展开更多
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode...Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous ...Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.展开更多
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,...Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.展开更多
In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost ef...In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.展开更多
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t...Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.展开更多
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio...To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.展开更多
Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems...Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs.展开更多
La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a c...La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622.展开更多
In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globall...In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology.展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ...Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.展开更多
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages...Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.展开更多
NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and t...NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.展开更多
Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the s...Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.展开更多
Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-pr...Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.展开更多
An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample ...An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.展开更多
Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
文摘The electrochemical properties of multiphases Zn 4Sb 3C 7 and ZnSbC 2 as new lithium ion anode materials were investigated. The composition and microstructures of these multiphase materials were analyzed by XRD and TEM. It was found that the addition of graphite modifies the microstructures of pure alloys. The capacities and the cycle stability of the anodes are greatly improved. The reversible capacity of Zn 4Sb 3C 7 reaches as high as 510 mAh/g at the first cycle, and keeps higher than 300 mAh/g after 10 charge/discharge cycles.
基金National Research Foundation,Grant/Award Number:2022R1A2C1092273。
文摘Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金This work was supported by the Fundamental Research Funds for the Central Universities(DUT20LAB123 and DUT20LAB307)the Natural Science Foundation of Jiangsu Province(BK20191167).
文摘Improving the reversibility of anionic redox and inhibiting irreversible oxygen evolution are the main challenges in the application of high reversible capacity Li-rich Mn-based cathode materials.A facile synchronous lithiation strategy combining the advantages of yttrium doping and LiYO_(2) surface coating is proposed.Yttrium doping effectively suppresses the oxygen evolution during the delithiation process by increasing the energy barrier of oxygen evolution reaction through strong Y–O bond energy.LiYO_(2) nanocoating has the function of structural constraint and protection,that protecting the lattice oxygen exposed to the surface,thus avoiding irreversible oxidation.As an Li^(+) conductor,LiYO_(2) nano-coating can provide a fast Li^(+) transfer channel,which enables the sample to have excellent rate performance.The synergistic effect of Y doping and nano-LiYO_(2) coating integration suppresses the oxygen release from the surface,accelerates the diffusion of Li^(+)from electrolyte to electrode and decreases the interfacial side reactions,enabling the lithium ion batteries to obtain good electrochemical performance.The lithium-ion full cell employing the Y-1 sample(cathode)and commercial graphite(anode)exhibit an excellent specific energy density of 442.9 Wh kg^(-1) at a current density of 0.1C,with very stable safety performance,which can be used in a wide temperature range(60 to-15℃)stable operation.This result illustrates a new integration strategy for advanced cathode materials to achieve high specific energy density.
基金support from the University of Tehran and the Iran National Science Foundation(INSF No.97,012,418).
文摘Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering.
基金support by,National Key Research and Development Program(2023YFB2503700 and 2023YFC3008804)the Beijing Municipal Science&Technology Commission No.Z231100006123003+1 种基金the National Science Foundation of China(22071133)the Beijing Natural Science Foundation(No.Z220020).
文摘In recent years,the new energy storage system,such as lithium ion batteries(LIBs),has attracted much attention.In order to meet the demand of industrial progress for longer cycle life,higher energy density and cost efficiency,a quantity of research has been conducted on the commercial application of LIBs.However,it is difficult to achieve satisfying safety and cycling performance simultaneously.There may be thermal runaway(TR),external impact,overcharge and overdischarge in the process of battery abuse,which makes the safety problem of LIBs more prominent.In this review,we summarize recent progress in the smart safety materials design towards the goal of preventing TR of LIBs reversibly from different abuse conditions.Benefiting from smart responsive materials and novel structural design,the safety of LIBs can be improved a lot.We expect to provide a comprehensive reference for the development of smart and safe lithium-based battery materials.
文摘Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.
基金funded by the National Key Research and Development Program of China(2018YFB0104400)supported by the Beijing Natural Science Foundation(2214066)。
文摘To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery.
基金supported by the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)+1 种基金the China Postdoctoral Science Foundation(2020M670898)the Heilongjiang Postdoctoral Fund(LBH-Z20060)。
文摘Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs.
基金Funded by the Guangdong Key R&D Program(Nos.2020B 0909040001 and 2019B090909003)。
文摘La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622.
文摘In a context of climate change exacerbated by the increasing scarcity of fossil fuels, renewable energies, in particular photovoltaic solar energy, offer a promising alternative. Solar energy is non-polluting, globally available and the most widely distributed resource on Earth. However, the intermittency of this energy source considerably limits its expansion. To solve this problem, storage techniques are being used, in particular, electrochemical storage using lithium-ion batteries. In this article, we will evaluate the performance of lithium-ion batteries when integrated into a photovoltaic grid. To do this, modelling and simulation of a photovoltaic system connected to a lithium-ion battery storage system will be carried out using MATLAB/Simulink software. A diagnostic of the energy consumption of the Kaya Polytechnic University Centre will be carried out, and the data will then be used in the simulator to observe the behaviour of the PV-Lion system. The results obtained indicate that lithium-ion batteries can effectively meet the centre’s energy demand. In addition, it was observed that lithium-ion batteries perform better under high energy demand than the other battery technologies studied. Successive storage systems with the same capacity but different battery technologies were compared. It was found that these storage systems can handle a maximum power of 4 × 10<sup>5</sup> W for lead-acid batteries, 6.5 × 10<sup>5</sup> W for nickel-cadmium batteries, 8.5 × 10<sup>5</sup> W for nickel-metal-hydride batteries, and more than 10 × 10<sup>5</sup> W for lithium-ion technology.
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
基金Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEMS‐202101National Natural Science Foundation of China,Grant/Award Numbers:51902162,51902162+4 种基金National Key R&D Program of China,Grant/Award Number:2022YFB4201904Foundation of Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEM‐S‐202101National Key R&D Program,Grant/Award Number:2022YFB4201904Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources,the International Innovation Center for Forest Chemicals and Materialsanjing Forestry University。
文摘Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+) diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−) and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1) at 0.05 A g^(−1) and superior stability(96.5% retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+) and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+) migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.
基金Science Development Foundation of Hubei University of Science&Technology,Grant/Award Numbers:2021F005,2021ZX14,2020TD01,2021ZX0Xianning City Program of Science&Technology,Grant/Award Number:2022ZRKX051Hubei University of Science and Technology Doctoral Research Initiation Project,Grant/Award Number:BK202217。
文摘Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.
基金Project(JS-211)supported by the State-Owned Enterprise Electric Vehicle Industry Alliance,China
文摘NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.
基金Project(50721003)supported by the National Natural Science Foundation of ChinaProject(07JJ6082)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Open Project of State Key Laboratory of Powder Metallurgy in Central South University,China
文摘Layered Li[Ni1/3Co1/3Mn1/3]O2 was synthesized with complex metal hydroxide precursors that were prepared by a co-precipitation method.The influence of coordination between ammonia and transition-metal cations on the structural and electrochemical properties of the Li[Ni1/3Co1/3Mn1/3]O2 materials was studied.It is found that when the molar ratio of ammonia to total transition-metal cations is 2.7:1,uniform particle size distribution of the complex metal hydroxide is observed via scanning electron microscopy.The average particle size of Li[Ni1/3Co1/3Mn1/3]O2 materials was measured to be about 500 nm,and the tap-density was measured to be approximately 2.37 g/cm3,which is comparable with that of commercialized LiCoO2.XRD analysis indicates that the presently synthesized Li[Ni1/3Co1/3Mn1/3]O2 has a hexagonal layered-structure.The initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode material is determined to be 181.5 mA·h/g using a Li/Li[Ni1/3Co1/3Mn1/3]O2 cell operated at 0.1C in the voltage range of 2.8-4.5 V.The discharge capacity at the 50th cycle at 0.5C is 170.6 mA·h/g.
基金Project (20110490594) supported by China Postdoctoral Science Foundation
文摘Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.
基金Projects (51204209,51274240) supported by the National Natural Science Foundation of China
文摘An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.