期刊文献+
共找到19,326篇文章
< 1 2 250 >
每页显示 20 50 100
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries 被引量:2
1
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 Shuttle effect Designed strategies Li-S battery lithium polysulfides
下载PDF
Concurrent hetero-/homo-geneous electrocatalysts to bi-phasically mediate sulfur species for lithium-sulfur batteries
2
作者 Rui-Bo LingHu Jin-Xiu Chen +6 位作者 Jin-Hao Zhang Bo-Quan Li Qing-Shan Fu Gulnur Kalimuldina Geng-Zhi Sun Yunhu Han Long Kong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期663-668,I0016,共7页
Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batter... Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries. 展开更多
关键词 lithium-sulfur batteries Electrocatalysis lithium polysulfides sulfur cathode Energy density
下载PDF
Insight into demand-driven preparation of single-atomic mediators for lithium–sulfur batteries
3
作者 Miaoyu Lu Yifan Ding +3 位作者 Zaikun Xue Ziang Chen Yuhan Zou Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期205-219,I0007,共16页
Lithium-sulfur(Li-S) batteries have attracted considerable attention as one of the most appealing energy storage systems.Strenuous efforts have been devoted to tackling the tremendous challenges,mainly pertaining to t... Lithium-sulfur(Li-S) batteries have attracted considerable attention as one of the most appealing energy storage systems.Strenuous efforts have been devoted to tackling the tremendous challenges,mainly pertaining to the severe shuttle effect,sluggish redox kinetics and lithium dendritic growth.Single-atomic mediators as promising candidates exhibit impressive performance in addressing these intractable issues.Related research often utilizes a trial-and-error approach,proposing solutions to fabricate single-atomic materials with diversified features.However,comprehensive review articles especially targeting demand-driven preparation are still in a nascent stage.Inspired by these considerations,this review summarizes the design of single-atomic mediators based on the application case-studies in LiS batteries and other metal-sulfur systems.Emerging preparation routes represented by chemical vapor deposition technology are introduced in a demand-oriented classification.Finally,future research directions are proposed to foster the advancement of single-atomic mediators in Li-S realm. 展开更多
关键词 Single-atom catalyst lithiumsulfur battery Chemical vapor deposition Demand-driven preparation
下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
4
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 Solid-state lithiumsulfur batteries Solid-state electrolytes Electrode/electrolyte interface Interfacial engineering Enhancing interfacial contact
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
5
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 lithiumsulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
Effect of the anionic composition of sulfolane based electrolytes on the performances of lithium-sulfur batteries
6
作者 Elena V.Karaseva Elena V.Kuzmina +2 位作者 Bo-Quan Li Qiang Zhang Vladimir S.Kolosnitsyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期231-240,I0005,共11页
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,... In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes. 展开更多
关键词 Donor number lithium salt SULFOLANE lithium polysulfide ELECTROLYTE lithium-sulfur battery lithium metal electrode
下载PDF
Lithium cation-doped tungsten oxide as a bidirectional nanocatalyst for lithium-sulfur batteries with high areal capacity
7
作者 Biying Wang Ke Chen +3 位作者 Jieying Liang Zhichun Yu Da-Wei Wang Ruopian Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期406-413,共8页
Lithium-sulfur(Li-S) batteries are promising for high energy-storage applications but suffer from sluggish conversion reaction kinetics and substantial lithium sulfide(Li_(2)S) oxidation barrier,especially under high ... Lithium-sulfur(Li-S) batteries are promising for high energy-storage applications but suffer from sluggish conversion reaction kinetics and substantial lithium sulfide(Li_(2)S) oxidation barrier,especially under high sulfur loadings.Here,we report a Li cation-doped tungsten oxide(Li_(x)WO_(x)) electrocatalyst that efficiently accelerates the S■HLi_(2)S interconversion kinetics.The incorporation of Li dopants into WO_(x) cationic vacancies enables bidirectional electrocatalytic activity for both polysulfide reduction and Li_(2)S oxidation,along with enhanced Li^(+) diffusion.In conjunction with theoretical calculations,it is discovered that the improved electrocatalytic activity originates from the Li dopant-induced geometric and electronic structural optimization of the Li_(x)WO_(x),which promotes the anchoring of sulfur species at favourable adsorption sites while facilitating the charge transfer kinetics.Consequently,Li-S cells with the Li_(x)WO_(x) bidirectional electrocatalyst show stable cycling performance and high sulfur utilization under high sulfur loadings.Our approach provides insights into cation engineering as an effective electrocatalyst design strategy for advancing high-performance Li-S batteries. 展开更多
关键词 Cation engineering Electrocatalysis Polysulfide conversion lithium sulfide oxidation lithium-sulfur batteries
下载PDF
Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid
8
作者 Haijun Yu Dongxing Wang +6 位作者 Shuai Rao Lijuan Duan Cairu Shao Xiaohui Tu Zhiyuan Ma Hongyang Cao Zhiqiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期688-696,共9页
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri... Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs. 展开更多
关键词 selective leaching oxalic acid sulfuric acid spent lithium-ion batteries
下载PDF
Lithium-Metal-Free Sulfur Batteries with Biochar and Steam-Activated Biochar-Based Anodes from Spent Common Ivy
9
作者 Pejman Salimi Willem Vercruysse +9 位作者 Susana Chauque Saeed Yari Eleonora Venezia Amine Lataf Nahal Ghanemnia Muhammad Shajih Zafar Mohammadhosein Safari An Hardy Remo Proietti Zaccaria Dries Vandamme 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期118-128,共11页
Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly react... Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1). 展开更多
关键词 activated biochar BIOCHAR electrochemical performance functional groups lithium-metal-free sulfur batteries
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries 被引量:2
10
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 lithium battery Thermal safety Thermal runaway Thermal-responsive
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
11
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
12
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst 被引量:1
13
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery sulfur battery Air battery Catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries 被引量:2
14
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes Solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries 被引量:1
15
作者 Zejun Sun Jinlin Yang +18 位作者 Hongfei Xu Chonglai Jiang Yuxiang Niu Xu Lian Yuan Liu Ruiqi Su Dayu Liu Yu Long Meng Wang Jingyu Mao Haotian Yang Baihua Cui Yukun Xiao Ganwen Chen Qi Zhang Zhenxiang Xing Jisheng Pan Gang Wu Wei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期1-17,共17页
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom... An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles. 展开更多
关键词 Cationic surfactant lithium nitrate additive Solid-electrolyte interphase Electric double layer lithium metal batteries
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
16
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
17
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies Gel polymer electrolytes lithium metal batteries
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries 被引量:1
18
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast Li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
19
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 Solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries 被引量:1
20
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部