Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion ...Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.展开更多
A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and s...A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and specific surface area, were discussed. The characteristic of charge and discharge, reversible specific capacity and cycle property were also studied. The relationship between the structure and properties of the composite oxides was explored. The results show that the composite oxide with a reasonable composition is beneficial to the improvement and enhancement of the properties.展开更多
100-W class power storage systems were developed, which comprised spherical Si solar cells, a maximum power point tracking charge control-ler, a lithium-ion battery, and one of two different types of direct current (D...100-W class power storage systems were developed, which comprised spherical Si solar cells, a maximum power point tracking charge control-ler, a lithium-ion battery, and one of two different types of direct current (DC)-alter- nating current (AC) converters. One inverter used SiC met-al-oxide-semicon-ductor field-effect transistors (MOSFETs) as switching devices while the other used Si MOSFETs. In these 100-W class inverters, the ON resistance was considered to have little influence on the efficiency. Nevertheless, the SiC-based inverter exhibited an approximately 3% higher DC-AC conversion efficiency than the Si-based inverter. Power loss analysis indicated that the higher efficiency resulted predominantly from lower switching and reverse recovery losses in the SiC MOSFETs compared with in the Si MOSFETs.展开更多
As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes...As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes are presented showing the coupling effect of power and mixed anodes was investigated at the varying charging rates, showing the tunable behaviors dependent on the hard carbon/graphite ratios. By studying the specific capacity evolution in different split potential ranges, we found that the mixed anodes with a higher proportion of hard carbon were advantageous when working in the cut-off potential greater than 0.10 V. The electrochemical impedance spectroscopy was measured at various anode potentials, which depicted the evolution of cell resistance with the state of charge. With the aid of electrochemical impedance spectroscopy, we found that the capacity evolution with mixed ratio is attributed to the lithiation-level induced difference of charge transfer resistance and Warburg resistance. A coupling effect was discovered showing a great potential in balancing the power-energy performance of mixed anode by simply controlling the ratio of hard-carbon/graphite.展开更多
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba...In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.展开更多
Recently for lithium-ion batteries in satellites and spaceships,the Battery Management System(BMS)has become essential to enhance life and guarantee safety.However,most of the balance management circuits need complica...Recently for lithium-ion batteries in satellites and spaceships,the Battery Management System(BMS)has become essential to enhance life and guarantee safety.However,most of the balance management circuits need complicated cell sensing and duty control modules.Such circuits are too costly to commercialize.In order to reduce the cost,weight,volume and energy consumption of BMS,this paper proposes a new battery management circuit.The designed circuit is passive and small in size.The charge voltage is regulated by increasing the bypass current through an adjustable reference chip.Experimental results show that the bypass current increases linearly if the charging voltage is in the range of 4.05 V to 4.2 V Also after several charge-discharge cycles,the differences between batteries visibly decrease.The proposed circuit is small in size,low in power con sumption and econo mical,making it ideal for commercial space.展开更多
基金the financial supports from the National Natural Science Foundation of China (51932003, 51902050, 51872115 & 51802110)Program for the Development of Science and Technology of Jilin Province (20190201309JC)+4 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universities JLU“Double-First Class” Discipline for Materials Science & Engineering.
文摘Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.
文摘A new lithium ion battery cathode material, composite oxide LiNi y Co z Mn 1- y-z O 2, was synthesized. The structure and physical properties of the material, including composition, distribution of size, density and specific surface area, were discussed. The characteristic of charge and discharge, reversible specific capacity and cycle property were also studied. The relationship between the structure and properties of the composite oxides was explored. The results show that the composite oxide with a reasonable composition is beneficial to the improvement and enhancement of the properties.
文摘100-W class power storage systems were developed, which comprised spherical Si solar cells, a maximum power point tracking charge control-ler, a lithium-ion battery, and one of two different types of direct current (DC)-alter- nating current (AC) converters. One inverter used SiC met-al-oxide-semicon-ductor field-effect transistors (MOSFETs) as switching devices while the other used Si MOSFETs. In these 100-W class inverters, the ON resistance was considered to have little influence on the efficiency. Nevertheless, the SiC-based inverter exhibited an approximately 3% higher DC-AC conversion efficiency than the Si-based inverter. Power loss analysis indicated that the higher efficiency resulted predominantly from lower switching and reverse recovery losses in the SiC MOSFETs compared with in the Si MOSFETs.
文摘As the anode materials of lithium-ion battery, the hard carbon has the higher power performance while the graphite has the higher energy performance, respectively. In this work, novel mixed hard carbon/graphite anodes are presented showing the coupling effect of power and mixed anodes was investigated at the varying charging rates, showing the tunable behaviors dependent on the hard carbon/graphite ratios. By studying the specific capacity evolution in different split potential ranges, we found that the mixed anodes with a higher proportion of hard carbon were advantageous when working in the cut-off potential greater than 0.10 V. The electrochemical impedance spectroscopy was measured at various anode potentials, which depicted the evolution of cell resistance with the state of charge. With the aid of electrochemical impedance spectroscopy, we found that the capacity evolution with mixed ratio is attributed to the lithiation-level induced difference of charge transfer resistance and Warburg resistance. A coupling effect was discovered showing a great potential in balancing the power-energy performance of mixed anode by simply controlling the ratio of hard-carbon/graphite.
文摘In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.
文摘Recently for lithium-ion batteries in satellites and spaceships,the Battery Management System(BMS)has become essential to enhance life and guarantee safety.However,most of the balance management circuits need complicated cell sensing and duty control modules.Such circuits are too costly to commercialize.In order to reduce the cost,weight,volume and energy consumption of BMS,this paper proposes a new battery management circuit.The designed circuit is passive and small in size.The charge voltage is regulated by increasing the bypass current through an adjustable reference chip.Experimental results show that the bypass current increases linearly if the charging voltage is in the range of 4.05 V to 4.2 V Also after several charge-discharge cycles,the differences between batteries visibly decrease.The proposed circuit is small in size,low in power con sumption and econo mical,making it ideal for commercial space.