A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and...A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.展开更多
To improve the performances of HDPE-based separators, polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation ...To improve the performances of HDPE-based separators, polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation (TIPS) process. By measuring the composition, morphology, crystallinity, ion conductivity, etc, the influence of PE-b-PEG on structures and properties of the blend separator were investigated. It was found that the incorporated PEG chains yielded higher surface energy for HDPE separator and improved affinity to liquid electrolyte. Thus, the stability of liquid electrolyte trapped in separator was increased while the interfacial resistance between separator and electrode was reduced effectively. The ionic conductivity of liquid electrolyte soaked separator could reach 1.28 ×10^-3 S.cm^-1 at 25℃, and the electrochemical stability window was up to 4.5 V (versus Li^+/Li). These results revealed that blending PE-b-PEG into porous HDPE membranes could efficiently improve the performances of PE separators for lithium batteries.展开更多
Herein, a facile strategy for the synthesis of sandwich pyrolyzed bacterial cellulose(PBC)/graphene oxide(GO) composite was reported simply by utilizing the large-scale regenerated biomass bacterial cellulose as p...Herein, a facile strategy for the synthesis of sandwich pyrolyzed bacterial cellulose(PBC)/graphene oxide(GO) composite was reported simply by utilizing the large-scale regenerated biomass bacterial cellulose as precursor. The unique and delicate structure where three-dimensional interconnected bacterial cellulose(BC) network embedded in two-dimensional GO skeleton could not only work as an effective barrier to retard polysulfide diffusion during the charge/discharge process to enhance the cyclic stability of the Li–S battery, but also offer a continuous electron transport pathway for the improved rate capability.As a result, by utilizing pure sulfur as cathodes, the Li–S batteries assembled with PBC/GO interlayer can still exhibit a capacity of nearly 600 mAh·g^-1 at 3C and only 0.055% capacity decay per cycle can be observed over 200 cycles. Additionally, the cost-efficient and environmentfriendly raw materials may enable the PBC/GO sandwich interlayer to be an advanced configuration for Li–S batteries.展开更多
基金Project supported by the Beijing Science and Technology ProjectChina(Grant No.Z13111000340000)+1 种基金the National Basic Research Program of China(Grant No.2012CB932900)the National Natural Science Foundation of China(Grant Nos.51325206 and 51421002)
文摘A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.
基金financially supported by the National Natural Science Foundation of China (Nos. 20974094, U1134002)
文摘To improve the performances of HDPE-based separators, polyether chains were incorporated into HDPE membranes by blending with poly(ethylene-block-ethylene glycol) (PE-b-PEG) via thermally induced phase separation (TIPS) process. By measuring the composition, morphology, crystallinity, ion conductivity, etc, the influence of PE-b-PEG on structures and properties of the blend separator were investigated. It was found that the incorporated PEG chains yielded higher surface energy for HDPE separator and improved affinity to liquid electrolyte. Thus, the stability of liquid electrolyte trapped in separator was increased while the interfacial resistance between separator and electrode was reduced effectively. The ionic conductivity of liquid electrolyte soaked separator could reach 1.28 ×10^-3 S.cm^-1 at 25℃, and the electrochemical stability window was up to 4.5 V (versus Li^+/Li). These results revealed that blending PE-b-PEG into porous HDPE membranes could efficiently improve the performances of PE separators for lithium batteries.
基金financially supported by the Ministry of Science and Technology of China(No.2012CB933403)the National Natural Science Foundation of China(Nos.51425302 and 51302045)the Beijing Municipal Science and Technology Commission(No.Z121100006812003)
文摘Herein, a facile strategy for the synthesis of sandwich pyrolyzed bacterial cellulose(PBC)/graphene oxide(GO) composite was reported simply by utilizing the large-scale regenerated biomass bacterial cellulose as precursor. The unique and delicate structure where three-dimensional interconnected bacterial cellulose(BC) network embedded in two-dimensional GO skeleton could not only work as an effective barrier to retard polysulfide diffusion during the charge/discharge process to enhance the cyclic stability of the Li–S battery, but also offer a continuous electron transport pathway for the improved rate capability.As a result, by utilizing pure sulfur as cathodes, the Li–S batteries assembled with PBC/GO interlayer can still exhibit a capacity of nearly 600 mAh·g^-1 at 3C and only 0.055% capacity decay per cycle can be observed over 200 cycles. Additionally, the cost-efficient and environmentfriendly raw materials may enable the PBC/GO sandwich interlayer to be an advanced configuration for Li–S batteries.