期刊文献+
共找到13,487篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation on step overcharge to self-heating behavior and mechanism analysis of lithium ion batteries 被引量:2
1
作者 Fengling Yun Shiyang Liu +14 位作者 Min Gao Xuanxuan Bi Weijia Zhao Zenghua Chang Minjuan Yuan Jingjing Li Xueling Shen Xiaopeng Qi Ling Tang Yi Cui Yanyan Fang Lihao Guo Shangqian Zhao Xiangjun Zhang Shigang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期301-311,共11页
To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavio... To obtain intrinsic overcharge boundary and investigate overcharge mechanism,here we propose an innovative method,the step overcharge test,to reduce the thermal crossover and distinguish the overcharge thermal behavior,including 5%state of charge(SOC)with small current overcharge and resting until the temperature equilibrium under adiabatic conditions.The intrinsic thermal response and the self-excitation behaviour are analysed through temperature and voltage changes during the step overcharge period.Experimental results show that the deintercalated state of the cathode is highly correlated to self-heating parasitic reactions.Before reaching the upper limit of Negative/Positive(N/P)ratio,the temperature changes little,the heat generation is significantly induced by the reversible heat(endothermic)and ohmic heat,which could balance each other.Following that the lithium metal is gradually deposited on the surface of the anode and reacts with electrolyte upon overcharge,inducing selfheating side reaction.However,this spontaneous thermal reaction could be“self-extinguished”.When the lithium in cathode is completely deintercalated,the boundary point of overcharge is about 4.7 V(~148%SOC,>40℃),and from this point,the self-heating behaviour could be continuously triggered until thermal runaway(TR)without additional overcharge.The whole static and spontaneous process lasts for 115 h and the side reaction heat is beyond 320,000 J.The continuous self-excitation behavior inside the battery is attributed to the interaction between the highly oxidized cathode and the solvent,which leads to the dissolution of metal ions.The dissolved metal ions destroy the SEI(solid electrolyte interphase)film on the surface of the deposited Li of anode,which induces the thermal reaction between lithium metal and the solvent.The interaction between cathode,the deposited Li of anode,and solvent promotes the temperature of the battery to rise slowly.When the temperature of the battery reaches more than 60℃,the reaction between lithium metal and solvent is accelerated.After the temperature rises rapidly to the melting point of the separator,it triggers the thermal runaway of the battery due to the short circuit of the battery. 展开更多
关键词 lithium ion battery Step overcharge SELF-HEATING Boundary Heat generation Amount of lithium
下载PDF
A surfactant-modified composite separator for high safe lithium ion battery
2
作者 Botao Yuan Niandong He +5 位作者 Yifang Liang Liwei Dong Jipeng Liu Jiecai Han Weidong He Yuanpeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期398-403,I0010,共7页
Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems... Separators have been gaining increasing attention to improve the performance of lithium ion batteries(LIBs),especially for high safe and long cycle life.However,commercial polyolefin separators still face the problems of rapid capacity decay and safety issues due to the poor wettability with electrolytes and low thermal stability.Herein,a novel composite separator is proposed by introducing a surfactant of sodium dodecyl thiosulfate(SDS)into the polytetrafluoroethylene(PTFE)substrate with the binder of polyacrylic acid(PAA)through the suction filtration method.The introduction of PAA/SDS enhances the adsorption energy between PTFE substrate and electrolyte through density functional theory calculations,which improves wettability and electrolyte uptake of the separator significantly.The asachieved composite separator enables the LIBs to own high Li^(+)conductivity(0.64×10^(-3)S cm^(-1))and Li^(+)transference number(0.63),further leading to a high capacity retention of 93.50%after 500 cycles at 1 C.In addition,the uniform and smooth surface morphology of Li metal employed the composite separator after cycling indicates that the lithium dendrites can be successfully inhibited.This work indicates a promising route for the preparation of a novel composite separator for high safe LIBs. 展开更多
关键词 Composite separator PTFE SURFACTANT High safe lithium ion batteries
下载PDF
Improving Cyclic Stability and Rate Performance of Lithium Ion Batteries Using La^(3+)Modified LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)Cathode Materials
3
作者 杜玉喆 RUAN Zhefei +1 位作者 ZHANG Ruiming 张海宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期735-742,共8页
La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a c... La_(4)NiLiO_(8)-coated NCM622 samples were prepared through a sol-gel method,and the electrochemical performance as cathode materials was investigated.It is revealed that part of the introduced La^(3+)ions produce a coating layer on the surface of NCM622 particles,while the rest occupy the 3b position of the lattice.The optimized sample exhibits a capacity retention of 96.54%after 100 cycles under 1C rate with a discharge specific capacity of 117.54 mAh·g^(-1)under 5C rate,much higher than those of the unmodified sample.The results show that the addition of La^(3+)ion can greatly improve the cyclic stability and the rate performance of NCM622. 展开更多
关键词 lithium ion batter La^(3+)doping NCM622 cycling stability rate performance
下载PDF
The Surface Coating of Commercial LiFePO_4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery 被引量:9
4
作者 XiaoLong Xu CongYu Qi +5 位作者 ZhenDong Hao Hao Wang JinTing Jiu JingBing Liu Hui Yan Katsuaki Suganuma 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期3-11,共9页
The requirement of energy-storage equipment needs to develop the lithium ion battery(LIB) with high electrochemical performance. The surface modification of commercial LiFePO_4(LFP) by utilizing zeolitic imidazolate f... The requirement of energy-storage equipment needs to develop the lithium ion battery(LIB) with high electrochemical performance. The surface modification of commercial LiFePO_4(LFP) by utilizing zeolitic imidazolate frameworks-8(ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances.In this work, the carbonized ZIF-8(C_(ZIF-8)) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/C_(ZIF-8) sample. The N_2 adsorption and desorptionisotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/C_(ZIF-8) cathode-active material delivers a discharge specific capacity of 159.3 m Ah g^(-1) at 0.1 C and a discharge specific energy of 141.7 m Wh g^(-1) after 200 cycles at 5.0 C(the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity,the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/C_(ZIF-8) cathode. This work will contribute to the improvement of the cathode materials of commercial LIB. 展开更多
关键词 LIFEPO4 Zeolitic imidazolate frameworks-8 Surface coating CATHODE lithium ion battery
下载PDF
The application of nanostructured transition metal sulfides as anodes for lithium ion batteries 被引量:10
5
作者 Jinbao Zhao Yiyong Zhang +2 位作者 Yunhui Wang He Li Yueying Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1536-1554,共19页
With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretic... With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed. 展开更多
关键词 Transition metal sulfides lithium ion batter ANODE
下载PDF
Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering 被引量:9
6
作者 Kangyu Zou Peng Cai +6 位作者 Baowei Wang Cheng Liu Jiayang Li Tianyun Qiu Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期239-257,共19页
The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium... The lack of methods to modulate intrinsic textures of carbon cathode has seriously hindered the revelation of in-depth relationship between inherent natures and capacitive behaviors,limiting the advancement of lithium ion capacitors(LICs).Here,an orientateddesigned pore size distribution(range from 0.5 to 200 nm)and graphitization engineering strategy of carbon materials through regulating molar ratios of Zn/Co ions has been proposed,which provides an effective platform to deeply evaluate the capacitive behaviors of carbon cathode.Significantly,after the systematical analysis cooperating with experimental result and density functional theory calculation,it is uncovered that the size of solvated PF6-ion is about 1.5 nm.Moreover,the capacitive behaviors of carbon cathode could be enhanced attributed to the controlled pore size of 1.5-3 nm.Triggered with synergistic effect of graphitization and appropriate pore size distribution,optimized carbon cathode(Zn90Co10-APC)displays excellent capacitive performances with a reversible specific capacity of^50 mAh g-1at a current density of 5 A g-1.Furthermore,the assembly pre-lithiated graphite(PLG)//Zn90Co10-APC LIC could deliver a large energy density of 108 Wh kg-1 and a high power density of 150,000 W kg-1 as well as excellent long-term ability with 10,000 cycles.This elaborate work might shed light on the intensive understanding of the improved capacitive behavior in LiPF<sub>6 electrolyte and provide a feasible principle for elaborate fabrication of carbon cathodes for LIC systems. 展开更多
关键词 Carbon materials Pore size regulation GRAPHITIZATion Capacitive behavior lithium ion capacitor
下载PDF
A ternary phased SnO_2-Fe_2O_3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries 被引量:5
7
作者 Wangliang Wu Yi Zhao +2 位作者 Jiaxin Li Chuxin Wu Lunhui Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期376-382,共7页
A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of ... A new SnO2-Fe2O3/SWCNTs(single-walled carbon nanotubes) ternary nanocomposite was first synthesized by a facile hydrothermal approach.SnO2 and Fe2O3 nanoparticles(NPs) were homogeneously located on the surface of SWCNTs,as confirmed by X-ray diffraction(XRD),transmission electron microscope(TEM) and energy dispersive X-ray spectroscopy(EDX).Due to the synergistic effect of different components,the as synthesized SnO2-Fe2O3/SWCNTs composite as an anode material for lithium-ion batteries exhibited excellent electrochemical performance with a high capacity of 692 mAh·g-1 which could be maintained after 50 cycles at 200 mA·g-1.Even at a high rate of2000 mA·g-1,the capacity was still remained at 656 mAh·g-1. 展开更多
关键词 SWCNTS SnO2 FE2O3 lithium ion batteries anode materials
下载PDF
Progress in electrochemical lithium ion pumping for lithium recovery 被引量:8
8
作者 Guolang Zhou Linlin Chen +3 位作者 Yanhong Chao Xiaowei Li Guiling Luo Wenshuai Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期431-445,I0009,共16页
Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by en... Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted. 展开更多
关键词 ELECTROCHEMISTRY lithium ion pumping RECOVERY Seawater/brine
下载PDF
Nb_2O_5-carbon core-shell nanocomposite as anode material for lithium ion battery 被引量:5
9
作者 Ge Li Xiaolei Wang Xueming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期357-362,共6页
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c... Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery. 展开更多
关键词 niobium pentoxide CORE-SHELL long cycle life high performance anode lithium ion battery
下载PDF
Brief overview of electrochemical potential in lithium ion batteries 被引量:6
10
作者 高健 施思齐 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期115-138,共24页
The physical fundamentals and influences upon electrode materials' open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate t... The physical fundamentals and influences upon electrode materials' open-circuit voltage (OCV) and the spatial distribution of electrochemical potential in the full cell are briefly reviewed. We hope to illustrate that a better understanding of these scientific problems can help to develop and design high voltage cathodes and interfaces with low Ohmic drop. OCV is one of the main indices to evaluate the performance of lithium ion batteries (LIBs), and the enhancement of OCV shows promise as a way to increase the energy density. Besides, the severe potential drop at the interfaces indicates high resistance there, which is one of the key factors limiting power density. 展开更多
关键词 lithium ion batteries open circuit voltage Fermi energy level electrochemical potential
下载PDF
Preparation of anatase TiO_2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries 被引量:4
11
作者 YI Jin,TAN Chunlin,LI Weishan,LEI Jianfei,and HAO Liansheng School of Chemistry and Environment & Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes,South China Normal University,Guangzhou 510006,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第5期505-510,共6页
With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and t... With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh.g^-1, and there is no significant capacity decay from the second cycle. 展开更多
关键词 lithium ion batteries titanium dioxide sol-gel process electrochemical properties sttrfactants
下载PDF
Hydrothermal exfoliated molybdenum disulfide nanosheets as anode material for lithium ion batteries 被引量:4
12
作者 Yundan Liu Long Ren +4 位作者 Xiang Qi Liwen Yang Jun Li Yao Wang Jianxin Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期207-212,共6页
Ultrathin MoS2 nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron... Ultrathin MoS2 nanosheets were prepared in high yield using a facile and effective hydrothermal intercalation and exfoliation route. The products were characterized in detail using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results show that the high yield of MoS2 nanosheets with good quality was successfully achieved and the dimensions of the immense nanosheets reached 1 μm-2/zm. As anode material for Li-ion batteries, the as-prepared MoS2 nanosheets electrodes exhibited a good initial capacity of 1190 mAh.g-l and excellent cyclic stability at constant current density of 50 mA.g-1. After 50 cycles, it still delivered reversibly sustained high capacities of 750 mAh.g-1. 展开更多
关键词 MoS2 NANOSHEETS EXFOLIATion lithium ion batteries
下载PDF
TiO_2-coated SnO_2 hollow spheres as anode materials for lithium ion batteries 被引量:4
13
作者 YI Jin LI Xiaoping +4 位作者 HU Shejun LI Weishan ZENG Ronghua FU Zhao CHEN Lang 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期589-594,共6页
TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transm... TiO2-coated SnO2 (TCS) hollow spheres, which are new anode materials for lithium ion (Li-ion) batteries, were prepared and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), and galvanostatic charge/discharge tests. The results obtained from XRD, SEM, and TEM show that TiO2 can be uniforrrdy coated on the surface of SnO2 hollow spheres with the assistance of anionic surfactant. The cyclic voltammograms indicate that both TiO2 and SnO2 exhibit the activity for Li-ion storage. The charge/discharge tests show that the prepared TCS hollow spheres have a higher reversible coulomb efficiency and a better cycling stability than the uncoated SnO2 hollow spheres. 展开更多
关键词 TiO2-coated SnO2 hollow spheres ANODE lithium ion batteries
下载PDF
First-principles study of interphase Ni_3Sn in Sn-Ni alloy for anode of lithium ion battery 被引量:4
14
作者 侯贤华 胡社军 +3 位作者 李伟善 汝强 余洪文 黄钊文 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3422-3427,共6页
This paper investigates the mechanism of Li insertion into interphase Ni3Sn in Ni-Sn alloy for the anode of lithium ion battery by means of the first-principles plane-wave pseudopotential. Compared with other phases, ... This paper investigates the mechanism of Li insertion into interphase Ni3Sn in Ni-Sn alloy for the anode of lithium ion battery by means of the first-principles plane-wave pseudopotential. Compared with other phases, it is found that the Ni3Sn has larger relative expansion ratio and lower electrochemical potential, with its specific plateaus voltage around 0.3 eV when lithium atoms are filled in all octahedral interstitial sites, and the relative expansion ratio increasing dramatically when the lithiated phase transits from octahedral interstitial sites to tetrahedral interstitial sites. So this phase is a devastating phase for whole alloy electrode materials. 展开更多
关键词 Sn-Ni alloy FIRST-PRINCIPLE electronic structure lithium ion battery
下载PDF
Porous nanostructured ZnCo2O4 derived from MOF-74:High-performance anode materials for lithium ion batteries 被引量:4
15
作者 Mengjuan Du Dan He +1 位作者 Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期673-680,共8页
Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and ... Nanostructured metal oxides derived from metal organic frameworks have been shown to be promising materials for application in high energy density lithium ion batteries. In this work, porous nanostructured ZnCo2O4and Co3O4were synthesized by a facile and cost-effective approach via the calcination of MOF-74 precursors and tested as anode materials for lithium ion batteries. Compared with Co3O4, the electrochemical properties of the obtained porous nanostructured ZnCo2O4exhibit higher specific capacity, more excellent cycling stability and better rate capability. It demonstrates a reversible capacity of 1243.2 m Ah/g after 80 cycles at 100 m A/g and an excellent rate performance with high average discharge specific capacities of 1586.8, 994.6, 759.6 and 509.2 m Ah/g at 200, 400, 600 and 800 m A/g, respectively.The satisfactory electrochemical performances suggest that this porous nanostructured ZnCo2O4is potentially promising for application as an efficient anode material for lithium ion batteries. 展开更多
关键词 Metal-organic frameworks Porous ZnCo2O4 Anodes lithium ion batteries
下载PDF
A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries 被引量:5
16
作者 Jinpeng Tian Rui Xiong +1 位作者 Weixiang Shen Ju Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期98-112,共15页
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p... State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift. 展开更多
关键词 Electric vehicle lithium ion battery Fractional order model State of charge
下载PDF
Self-supported hierarchical porous Li_(4)Ti_(5)O_(12)/carbon arrays for boosted lithium ion storage 被引量:4
17
作者 Jun Liu Aixiang Wei +4 位作者 Guoxiang Pan Shenghui Shen Zhiming Xiao Yu Zhao Xinhui Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期754-760,共7页
The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays templ... The development of fast rechargeable lithium ion batteries(LIBs)is highly dependent on the innovation of advanced high-power electrode materials.In this work,for the first time,we report a sacrificial NiO arrays template method for controllable synthesis of self-supported hierarchical porous Li_(4)Ti_(5)O_(12)/C(LTO/C)nanoflakes arrays,for use as fast rechargeable anodes for LIBs.The ultrathin(2-3 nm)carbon layer was uniformly coated on the LTO forming arrays architecture.The hierarchical porous LTO/C nanoflakes consisted of primary cross-linked nanoparticles of 50-100 nm and showed large porosity.Because of the enhanced electrical conductivity and accelerated ion transfer channels,the well-designed binderfree porous LTO/C nanoflakes arrays exhibited notable high-rate lithium ion storage performance with smaller polarization,better electrochemical reactivity,higher specific capacity(157 mAh g^(-1) at the current density of 20C)and improved long-term cycling life(96.2% after 6000 cycles at 20C),superior to the unmodified porous LTO arrays counterpart(126 mAh g^(-1) at 20C and 88.0%after 6000 cycles at 20C).Our work provides a new template for the construction of high-performance high-rate electrodes for electrochemical energy storage. 展开更多
关键词 lithium titanate CARBON ANODE High rate lithium ion batteries
下载PDF
A New Tin Graphite Intercalation Compound for Lithium Ion Batteries 被引量:4
18
作者 XIE Hai-ming YAN Xue-dong +4 位作者 YU Hai-ying ZHANG Ling-yun YANG Gui-ling XU Yang WANG Rong-shun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第5期639-642,共4页
A new composite material was fabricated by intercalating tin nanoparticles into graphite. The tin graphite intercalation compound(Sn-GIC) was prepared by the interactions of tin tetrachloride with KC8 (K-GIC) in t... A new composite material was fabricated by intercalating tin nanoparticles into graphite. The tin graphite intercalation compound(Sn-GIC) was prepared by the interactions of tin tetrachloride with KC8 (K-GIC) in tetrahydrofuran (THF). As the anode of lithium ion batteries, Sn-GIC presents a steady reversible capacity(363 mA·h/g) and a good cycling performance in comparison with Sn and SnO2, it suggests that the association of tin with graphite not only improves the reversible capacities, but also prevents the volume changes resulted from lithium insertion and extraction with tin during a charge-discharge process. 展开更多
关键词 lithium ion battery Anode material Sn-GIC
下载PDF
Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase 被引量:3
19
作者 Peng Zhao Juping Yang +4 位作者 Yuming Shang Li Wang Mou Fang Jianlong Wang Xiangming He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期138-144,共7页
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino... Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators. 展开更多
关键词 thermal shrinkage organic/inorganic hybrid crosslinked network chemical grafting SEPARATOR lithium ion battery
下载PDF
NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life 被引量:4
20
作者 Rui Zhang Zhe Xue +3 位作者 Jiaqian Qin Montree Sawangphnjk Xinyu Zhang Riping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期143-153,共11页
Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are stil... Nickel/cobalt-layered double hydroxides(Ni Co-LDH) have been attracted increasing interest in the applications of anode materials for lithium ion battery(LIB), but the low cycle stability and rate performance are still limited its practice applications. To achieve high performance LIB, the surface-confined strategy has been applied to design and fabricate a new anode material of NiCo-LDH nanosheet anchored on the surface of Ti3C2 MXene(Ni Co-LDH/Ti3C2). The ultra-thin, bended and wrinkled α-phase crystal with an interlayer spacing of 8.1 ? can arrange on the conductive substrates Ti3C2 MXene directly, resulting in high electrolyte diffusion ability and low internal resistance. Furthermore, chemical bond interactions between the highly conductive Ti3C2 MXene and Ni Co-LDH nanosheets can greatly increase the ion and electron transport and reduce the volume expansion of NiCo-LDH during Li ion intercalation. As expected,the discharge capacity of 562 m Ah g-1 at 5.0 A g-1 for 800 cycles without degradation can be achieved,rate capability and cycle performance are better than that of NiCo-LDH(~100 mAh g-1). Furthermore, the density function theory(DFT) calculations were performed to demonstrate that Ni Co-LDH/Ti3C2 system can be used as a highly desirable and promising anode material for lithium ion battery. 展开更多
关键词 MXene Ti3C2 NiCo-LDH lithium ion battery First-principles calculation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部