期刊文献+
共找到1,384篇文章
< 1 2 70 >
每页显示 20 50 100
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
1
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
2
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method 被引量:22
3
作者 LI Hao-yu YE Hua +1 位作者 SUN Ming-cang CHEN Wu-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3239-3248,共10页
Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec... Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%. 展开更多
关键词 lithium iron phosphate batteries selective leaching RECOVERY sodium persulfate lithium carbonate
下载PDF
Non-aqueous lithium bromine battery of high energy density with carbon coated membrane 被引量:1
4
作者 Xiaoli Xi Xianfeng Li +4 位作者 Chenhui Wang Qinzhi Lai Yuanhui Cheng Pengcheng Xu Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期639-646,共8页
Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising techn... Flow batteries with high energy density and long cycle life have been pursued to advance the progress of energy storage and grid application. Non-aqueous batteries with wide voltage windows represent a promising technology without the limitation of water electrolysis, but they suffer from low electrolyte concentration and unsatisfactory battery performance. Here, a non-aqueous lithium bromine rechargeable battery is proposed, which is based on Br;/Br;and Li;/Li as active redox pairs, with fast redox kinetics and good stability. The Li/Br battery combines the advantages of high output voltage(;.1 V),electrolyte concentration(3.0 mol/L), maximum power density(29.1 m W/cm;) and practical energy density(232.6 Wh/kg). Additionally, the battery displays a columbic efficiency(CE) of 90.0%, a voltage efficiency(VE) of 88.0% and an energy efficiency(EE) of 80.0% at 1.0 m A/cm;after continuously running for more than 1000 cycles, which is by far the longest cycle life reported for non-aqueous flow batteries. 展开更多
关键词 NON-AQUEOUS battery lithium BROMINE energy-storage
下载PDF
Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
5
作者 Shao-Le Song Run-Qing Liu +3 位作者 Miao-Miao Sun Ai-Gang Zhen Fan-Zhen Kong Yue Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1275-1287,共13页
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho... The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application. 展开更多
关键词 Spent lithium-ion battery Blended cathode materials RECOVERY lithium carbonate iron phosphate
原文传递
Accurate Modeling of Prismatic Type High Current Lithium-Iron-Phosophate (LiFePO4) Battery for Automotive Applications
6
作者 Farag K. Abo-Elyousr F. N. Abd-Elbar +1 位作者 H. A. Abo-Zaid G. H. Rim 《Energy and Power Engineering》 2012年第6期465-481,共17页
With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for pri... With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for prismatic high current lithium-iron-phosphate battery is presented. An automotive TSLFP160AHA lithium-iron-phosphate battery bank is tested. The different capacity GBDLFMP60AH battery bank is used to validate the model extracted from the former battery. Effect of current, stacking and SOC upon the battery parameters performance is investigated. Six empirical equations are obtained to extract the prismatic type LiFePO4 model as a function of SOC. Based on comparing the measured and simulated data, a well accuracy of less than 50mV maximum error voltage with 1.7% operating time error referred to the measured data is achieved. The model can be easily modified to simulate different batteries and can be extended for wide ranges of different currents. 展开更多
关键词 State of CHARGE (SOC) Automotive battery Dynamics battery Modeling Simulators lithium-iron-phosphate battery
下载PDF
Post lithium ion batteries for emerging energy storage technologies
7
作者 Yan YU Xiaobo JI Hongjin FAN 《Green Energy & Environment》 SCIE 2018年第1期1-1,共1页
It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and ev... It is obvious that in the next ten years,lithium ion batteries are still the dominating power source for a wide range of products including consumable electronics,vehicles(cars,motorbikes,scooters,buses),drones,and even robots and tanks.However,in the pursuit of cost-effective,safety-reliable,and highly efficient energy storage technologies,researchers are developing 展开更多
关键词 Post lithium ion batteries for emerging energy storage technologies
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
8
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-Ion Batteries battery Construction battery Characteristics energy storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Nanostructured energy materials for electrochemical energy conversion and storage: A review 被引量:36
9
作者 Xueqiang Zhang Xinbing Cheng Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期967-984,共18页
Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient ... Nanostructured materials have received tremendous interest due to their unique mechanical/electrical properties and overall behavior contributed by the complex synergy of bulk and interfacial properties for efficient and effective energy conversion and storage. The booming development of nanotechnology affords emerging but effective tools in designing advanced energy material. We reviewed the significant progress and dominated nanostructured energy materials in electrochemical energy conversion and storage devices, including lithium ion batteries, lithium-sulfur batteries, lithium-oxygen batteries, lithium metal batteries, and supercapacitors. The use of nanostructured electrocatalyst for effective electrocatalysis in oxygen reduction and oxygen evolution reactions for fuel cells and metal-air batteries was also included. The challenges in the undesirable side reactions between electrolytes and electrode due to high electrode/electrolyte contact area, low volumetric energy density of electrode owing to low tap density, and uniform production of complex energy materials in working devices should be overcome to fully demonstrate the advanced energy nanostructures for electrochemical energy conversion and storage. The energy chemistry at the interfaces of nanostructured electrode/electrolyte is highly expected to guide the rational design and full demonstration of energy materials in a working device. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 energy materials lithium ion batteries lithium sulfur batteries lithium oxygen batteries lithium metal SUPERCAPACITORS Oxygen reduction reaction Oxygen evolution reaction ELECTROCATALYSIS Nanostructures energy conversion and storage
下载PDF
Composites of Graphene and LiFePO_4 as Cathode Materials for Lithium-Ion Battery:A Mini-review 被引量:2
10
作者 Haixia Wu Qinjiao Liu Shouwu Guo 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期316-326,共11页
This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the compos... This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon. 展开更多
关键词 lithium iron phosphate GRAPHENE Composite Electrochemical property lithium-ion battery
下载PDF
SnO_2 nanospheres among GO and SWNTs networks as anode for enhanced lithium storage performances 被引量:2
11
作者 Weiwei Wen Mingzhong Zou +3 位作者 Qian Feng Jiaxin Li Heng Lai Zhigao Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期445-449,共5页
Conducting supporters of purified single-walled carbon nanotubes(SWNTs) and graphene oxide(GO)were used to confine pomegranate-structured Sn O2 nanospheres for forming SnO-GO-SWNT composites.As anode material for ... Conducting supporters of purified single-walled carbon nanotubes(SWNTs) and graphene oxide(GO)were used to confine pomegranate-structured Sn O2 nanospheres for forming SnO-GO-SWNT composites.As anode material for lithium ion batteries(LIBs), this composite exhibits a stable and large reversible capacity together with an excellent rate capability. In addition, an analysis of the AC impedance spectroscopy has been used to confirm the enhanced mechanism for LIB performance. The improved electrochemical performance should be ascribed greatly to the reinforced synergistic effects between GO and SWNT networks, and their enhanced contribution of the conductivity. These results indicate that this composite has potential for utilization in high-rate and durable LIBs. 展开更多
关键词 lithium batteries SnO_2-GO-SWNT anodes Electrochemical performance energy storage
下载PDF
Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices 被引量:2
12
作者 Noura Zahir Pierre Magri +2 位作者 Wen Luo Jean Jacques Gaumet Philippe Pierrat 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期201-214,共14页
Graphene quantum dots(GQDs)which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity,high surface area,and... Graphene quantum dots(GQDs)which are nanofragments of graphene with an average size between 2 and 50 nm have attracted much attention due to their outstanding properties such as high conductivity,high surface area,and good solubility in various solvents.GQDs combine the quantum confinement and edges effects and the properties of graphene.Therefore,GQDs offers a broad range of applications in various fields(medicine,energy conversion,and energy storage devices).This review will present the recent research based on the introduction of GQDs in batteries,supercapacitors,and microsupercapacitors as electrodes materials or mixed with an active material as an auxiliary agent.Tables,discussed on selected examples,summarize the electrochemical performances and finally,challenges and perspectives are recalled for the subsequent optimization strategy of electrode materials.This review is expected to appeal a broad interest on functional GQDs materials and promote the further development of high-performance energy storage device. 展开更多
关键词 energy storage graphene quantum dots lithium ion batteries sodium ion batteries SUPERCAPACITOR
下载PDF
Preparation and characterization of LiFePO4 thin films as cathode materials for lithium ion battery 被引量:3
13
作者 肖卓炳 麻明友 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期273-276,共4页
关键词 锂离子电池 阴极材料 LiFePO4薄膜 溶胶-凝胶法 制备 表征
下载PDF
Synthesis and characterization of LiFePO_4/C composite used as lithium storage electrodes 被引量:1
14
作者 胡国荣 张新龙 +2 位作者 彭忠东 廖刚 禹筱元 《中国有色金属学会会刊:英文版》 CSCD 2004年第2期237-240,共4页
LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon co... LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon contents in the sample 1 and sample 2 are 3.06% and 4.95%(mass fraction), respectively. It is believed that the synthesis of LiFePO4 with sugar added before heating is a good method because the synthesized particles having uniform small size are covered by carbon. The performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction and scanning electron microscope observation. The addition of carbon limits the particles size growth and enables high electron conductivity. The LiFePO4/C composites show very good electrochemical performance delivering about 142 mAh/g specific capacity when being cycled at the C/10 rate. The capacity fade upon cycling is very small. 展开更多
关键词 锂离子电池 正极材料 磷酸锂 LIFEPO4/C 复合材料 电极过程
下载PDF
Biomimetic Synthesis of Ear-of-wheat-shaped Manganese Oxide Nanoparticles on Carbon Nanotubes for High-capacity Lithium Storage
15
作者 Xiaofei Sun Meijuan Li +5 位作者 Anastase Ndahimana Peng Ding Youlong Xu Qiongdan Hu Kai Chen Tianyu Feng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期399-406,共8页
Manganese oxide(Mn_(3)O_(4))is of great potential for lithium storage based on conversion reactions,but its application in rechargeable lithium batteries is severely hindered by the low electric conductivity and large... Manganese oxide(Mn_(3)O_(4))is of great potential for lithium storage based on conversion reactions,but its application in rechargeable lithium batteries is severely hindered by the low electric conductivity and large volume variation during lithiation/delithiation.Herein,a biomimetic ear-of-wheat-like nanocomposite of ultrafine Mn_(3)O_(4)nanoparticles(MONPs)and multi-walled carbon nanotubes(MWCNTs)is prepared using a facile solvothermal method.The tightly packed MONP"cereal-grains"are directly grown and uniformly interspersed on the outer surface of skeleton MWCNT"central stems."The ultrafine MONPs are favorable to lithium incorporation/extraction while the interconnected MWCNT skeletons provide a highly conducting network for electron transportation.Consequently,a high reversible capacity of 810 m A h g^(-1)is obtained at the current density of 40 m A g^(-1).After 50 cycles at 160 m A g^(-1),the nanocomposite still delivers a capacity up to 796 m A h g^(-1),which is higher than twice of that of pure Mn_(3)O_(4)nanopowders.The unique nanostructure and the facile biomimetic method can be widely extended to design and explore various highperformance energy materials for lithium/sodium ion batteries and fuel cells. 展开更多
关键词 ANODE energy storage lithium battery NANOCOMPOSITE NANOSTRUCTURE
下载PDF
Comparison Study on Anode Materials of Lithium-Ion Battery Applied in Tibet
16
作者 Guangzhou Zhang Heming Deng +6 位作者 Buqiong Xiao Tianyu Hou Yue Song Nima Shida Hang Qi Anat Deepatana Shun Tang 《Journal of Power and Energy Engineering》 2019年第12期42-50,共9页
Lithium-ion battery is facing the capacity fade in cold area. It reports in this paper to improve the temperature-tolerance using the novel materials in the battery design. Mesophase carbon microspheres (MG11) compose... Lithium-ion battery is facing the capacity fade in cold area. It reports in this paper to improve the temperature-tolerance using the novel materials in the battery design. Mesophase carbon microspheres (MG11) composed of 2H + 3R graphite phase with more uniform size were used as anode material and a new binder (WRA268) was used. The tests results show that at 0&deg;C, MG11 using conventional binder (styrene butadiene rubber, SBR) attains 66% of reversible capacity retention rate, and synthetic graphite (FSN-1) using WRA268 as binder attains 76.9% of reversible capacity retention rate, but it attains 34% for the FSN-1 using SBR as the binder. These results show that MG11-WRA268 is promising materials using for battery in cold areas such as Tibet. 展开更多
关键词 lithium-ION battery ANODE COLD Area energy storage
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
17
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 Plug-In HYBRID Electric Vehicle HYBRID energy storage System HIGH energy battery HIGH Power battery Electrical DOUBLE-LAYER CAPACITOR lithium-Ion CAPACITOR
下载PDF
锂离子电池储能电站的热失控状态检测与安全防控技术研究进展 被引量:2
18
作者 孟国栋 李雨珮 +4 位作者 唐佳 顾颐 金阳 陈欣 成永红 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期3105-3127,I0018,共24页
锂离子电池具有能量密度大、使用寿命长、工作温度范围宽、自放电小等优点,是中国电化学储能电站的主流电池技术。然而,在加热、过充等恶劣工况下,锂离子电池易发生热失控引发火灾甚至爆炸,因此其安全问题已逐渐成为锂离子电池储能电站... 锂离子电池具有能量密度大、使用寿命长、工作温度范围宽、自放电小等优点,是中国电化学储能电站的主流电池技术。然而,在加热、过充等恶劣工况下,锂离子电池易发生热失控引发火灾甚至爆炸,因此其安全问题已逐渐成为锂离子电池储能电站建设及大规模应用的首要问题。该文系统分析了锂离子储能电池热失控的诱因、电池内部反应过程及外部特征参量的变化规律,重点总结了当前主要的电池热失控状态检测技术、智能诊断算法及储能电站安全防控技术,最后对储能电站热失控状态检测及安全防控技术进行了总结和展望。 展开更多
关键词 锂离子电池 储能电站 热失控 状态检测 安全防控
下载PDF
Research and Application on Energy Storage System Smart Control
19
作者 Hui Bao Lixian Qiao 《通讯和计算机(中英文版)》 2012年第8期965-969,共5页
关键词 智能控制 储能系统 存储系统 控制能量 应用 功率分配 能源供应 锂离子电池
下载PDF
液氮抑制32650型磷酸铁锂电池组热失控传播特性试验研究 被引量:1
20
作者 张媛媛 张志伟 +1 位作者 赵子明 张国维 《消防科学与技术》 CAS 北大核心 2024年第2期156-161,共6页
文章从磷酸铁锂电池组热失控危险特性出发,通过试验研究32650型磷酸铁锂电池单体热失控特征及其电池组间热失控传播过程。探究利用液氮喷淋阻断电池组间热失控传播,分析液氮对磷酸铁锂电池的防灭火效能。结果表明:单体锂电池热失控可划... 文章从磷酸铁锂电池组热失控危险特性出发,通过试验研究32650型磷酸铁锂电池单体热失控特征及其电池组间热失控传播过程。探究利用液氮喷淋阻断电池组间热失控传播,分析液氮对磷酸铁锂电池的防灭火效能。结果表明:单体锂电池热失控可划分为被动加热、安全阀泄压、自反应、喷射火、明火熄灭等5个阶段,单体电池温度变化曲线呈倒“V”形。液氮可有效阻断电池组间的热失控传播,能够大幅降低喷射火阶段的电池峰值温度。且喷淋时间越长,阻止电池组热失控传播越明显。30 s液氮喷淋条件下,除电池A1外,其他电池未进入安全阀泄压阶段。 展开更多
关键词 磷酸铁锂电池 热失控 液氮 冷却降温
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部